HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chjval Structured version   Unicode version

Theorem chjval 25946
Description: Value of join in  CH. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
chjval  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  vH  B
)  =  ( _|_ `  ( _|_ `  ( A  u.  B )
) ) )

Proof of Theorem chjval
StepHypRef Expression
1 chsh 25818 . 2  |-  ( A  e.  CH  ->  A  e.  SH )
2 chsh 25818 . 2  |-  ( B  e.  CH  ->  B  e.  SH )
3 shjval 25945 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  vH  B
)  =  ( _|_ `  ( _|_ `  ( A  u.  B )
) ) )
41, 2, 3syl2an 477 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  vH  B
)  =  ( _|_ `  ( _|_ `  ( A  u.  B )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    u. cun 3474   ` cfv 5586  (class class class)co 6282   SHcsh 25521   CHcch 25522   _|_cort 25523    vH chj 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-hilex 25592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-sh 25800  df-ch 25815  df-chj 25904
This theorem is referenced by:  chjvali  25947
  Copyright terms: Public domain W3C validator