HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredi Structured version   Unicode version

Theorem chirredi 25803
Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
chirred.1  |-  A  e. 
CH
chirred.2  |-  ( x  e.  CH  ->  A  C_H  x )
Assertion
Ref Expression
chirredi  |-  ( A  =  0H  \/  A  =  ~H )
Distinct variable group:    x, A

Proof of Theorem chirredi
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . 3  |-  0H  =  0H
2 ioran 490 . . . . 5  |-  ( -.  ( A  =  0H  \/  ( _|_ `  A
)  =  0H )  <-> 
( -.  A  =  0H  /\  -.  ( _|_ `  A )  =  0H ) )
3 df-ne 2613 . . . . . 6  |-  ( A  =/=  0H  <->  -.  A  =  0H )
4 df-ne 2613 . . . . . 6  |-  ( ( _|_ `  A )  =/=  0H  <->  -.  ( _|_ `  A )  =  0H )
53, 4anbi12i 697 . . . . 5  |-  ( ( A  =/=  0H  /\  ( _|_ `  A )  =/=  0H )  <->  ( -.  A  =  0H  /\  -.  ( _|_ `  A )  =  0H ) )
62, 5bitr4i 252 . . . 4  |-  ( -.  ( A  =  0H  \/  ( _|_ `  A
)  =  0H )  <-> 
( A  =/=  0H  /\  ( _|_ `  A
)  =/=  0H ) )
7 chirred.1 . . . . . . . 8  |-  A  e. 
CH
87hatomici 25768 . . . . . . 7  |-  ( A  =/=  0H  ->  E. p  e. HAtoms  p  C_  A )
97choccli 24715 . . . . . . . 8  |-  ( _|_ `  A )  e.  CH
109hatomici 25768 . . . . . . 7  |-  ( ( _|_ `  A )  =/=  0H  ->  E. q  e. HAtoms  q  C_  ( _|_ `  A ) )
118, 10anim12i 566 . . . . . 6  |-  ( ( A  =/=  0H  /\  ( _|_ `  A )  =/=  0H )  -> 
( E. p  e. HAtoms  p  C_  A  /\  E. q  e. HAtoms  q  C_  ( _|_ `  A ) ) )
12 reeanv 2893 . . . . . 6  |-  ( E. p  e. HAtoms  E. q  e. HAtoms  ( p  C_  A  /\  q  C_  ( _|_ `  A ) )  <->  ( E. p  e. HAtoms  p  C_  A  /\  E. q  e. HAtoms  q  C_  ( _|_ `  A
) ) )
1311, 12sylibr 212 . . . . 5  |-  ( ( A  =/=  0H  /\  ( _|_ `  A )  =/=  0H )  ->  E. p  e. HAtoms  E. q  e. HAtoms  ( p  C_  A  /\  q  C_  ( _|_ `  A ) ) )
14 simpll 753 . . . . . . . . . 10  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  (
q  e. HAtoms  /\  q  C_  ( _|_ `  A
) ) )  ->  p  e. HAtoms )
15 simprl 755 . . . . . . . . . 10  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  (
q  e. HAtoms  /\  q  C_  ( _|_ `  A
) ) )  -> 
q  e. HAtoms )
16 atelch 25753 . . . . . . . . . . . . . . . 16  |-  ( p  e. HAtoms  ->  p  e.  CH )
17 chsscon3 24908 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  CH  /\  A  e.  CH )  ->  ( p  C_  A  <->  ( _|_ `  A ) 
C_  ( _|_ `  p
) ) )
1816, 7, 17sylancl 662 . . . . . . . . . . . . . . 15  |-  ( p  e. HAtoms  ->  ( p  C_  A 
<->  ( _|_ `  A
)  C_  ( _|_ `  p ) ) )
1918biimpa 484 . . . . . . . . . . . . . 14  |-  ( ( p  e. HAtoms  /\  p  C_  A )  ->  ( _|_ `  A )  C_  ( _|_ `  p ) )
20 sstr 3369 . . . . . . . . . . . . . 14  |-  ( ( q  C_  ( _|_ `  A )  /\  ( _|_ `  A )  C_  ( _|_ `  p ) )  ->  q  C_  ( _|_ `  p ) )
2119, 20sylan2 474 . . . . . . . . . . . . 13  |-  ( ( q  C_  ( _|_ `  A )  /\  (
p  e. HAtoms  /\  p  C_  A ) )  -> 
q  C_  ( _|_ `  p ) )
2221ancoms 453 . . . . . . . . . . . 12  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  q  C_  ( _|_ `  A
) )  ->  q  C_  ( _|_ `  p
) )
23 atne0 25754 . . . . . . . . . . . . . . 15  |-  ( p  e. HAtoms  ->  p  =/=  0H )
2423adantr 465 . . . . . . . . . . . . . 14  |-  ( ( p  e. HAtoms  /\  q  C_  ( _|_ `  p
) )  ->  p  =/=  0H )
25 sseq1 3382 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  q  ->  (
p  C_  ( _|_ `  p )  <->  q  C_  ( _|_ `  p ) ) )
2625bicomd 201 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  q  ->  (
q  C_  ( _|_ `  p )  <->  p  C_  ( _|_ `  p ) ) )
27 chssoc 24904 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  CH  ->  (
p  C_  ( _|_ `  p )  <->  p  =  0H ) )
2816, 27syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e. HAtoms  ->  ( p  C_  ( _|_ `  p )  <-> 
p  =  0H ) )
2926, 28sylan9bbr 700 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e. HAtoms  /\  p  =  q )  -> 
( q  C_  ( _|_ `  p )  <->  p  =  0H ) )
3029biimpa 484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p  e. HAtoms  /\  p  =  q )  /\  q  C_  ( _|_ `  p
) )  ->  p  =  0H )
3130an32s 802 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  e. HAtoms  /\  q  C_  ( _|_ `  p
) )  /\  p  =  q )  ->  p  =  0H )
3231ex 434 . . . . . . . . . . . . . . 15  |-  ( ( p  e. HAtoms  /\  q  C_  ( _|_ `  p
) )  ->  (
p  =  q  ->  p  =  0H )
)
3332necon3d 2651 . . . . . . . . . . . . . 14  |-  ( ( p  e. HAtoms  /\  q  C_  ( _|_ `  p
) )  ->  (
p  =/=  0H  ->  p  =/=  q ) )
3424, 33mpd 15 . . . . . . . . . . . . 13  |-  ( ( p  e. HAtoms  /\  q  C_  ( _|_ `  p
) )  ->  p  =/=  q )
3534adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  q  C_  ( _|_ `  p
) )  ->  p  =/=  q )
3622, 35syldan 470 . . . . . . . . . . 11  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  q  C_  ( _|_ `  A
) )  ->  p  =/=  q )
3736adantrl 715 . . . . . . . . . 10  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  (
q  e. HAtoms  /\  q  C_  ( _|_ `  A
) ) )  ->  p  =/=  q )
38 superpos 25763 . . . . . . . . . 10  |-  ( ( p  e. HAtoms  /\  q  e. HAtoms  /\  p  =/=  q
)  ->  E. r  e. HAtoms  ( r  =/=  p  /\  r  =/=  q  /\  r  C_  ( p  vH  q ) ) )
3914, 15, 37, 38syl3anc 1218 . . . . . . . . 9  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  (
q  e. HAtoms  /\  q  C_  ( _|_ `  A
) ) )  ->  E. r  e. HAtoms  ( r  =/=  p  /\  r  =/=  q  /\  r  C_  ( p  vH  q
) ) )
40 df-3an 967 . . . . . . . . . . . 12  |-  ( ( r  =/=  p  /\  r  =/=  q  /\  r  C_  ( p  vH  q
) )  <->  ( (
r  =/=  p  /\  r  =/=  q )  /\  r  C_  ( p  vH  q ) ) )
41 neanior 2702 . . . . . . . . . . . . 13  |-  ( ( r  =/=  p  /\  r  =/=  q )  <->  -.  (
r  =  p  \/  r  =  q ) )
4241anbi1i 695 . . . . . . . . . . . 12  |-  ( ( ( r  =/=  p  /\  r  =/=  q
)  /\  r  C_  ( p  vH  q
) )  <->  ( -.  ( r  =  p  \/  r  =  q )  /\  r  C_  ( p  vH  q
) ) )
4340, 42bitri 249 . . . . . . . . . . 11  |-  ( ( r  =/=  p  /\  r  =/=  q  /\  r  C_  ( p  vH  q
) )  <->  ( -.  ( r  =  p  \/  r  =  q )  /\  r  C_  ( p  vH  q
) ) )
44 chirred.2 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CH  ->  A  C_H  x )
457, 44chirredlem4 25802 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  ( q  e. HAtoms  /\  q  C_  ( _|_ `  A ) ) )  /\  ( r  e. HAtoms  /\  r  C_  ( p  vH  q ) ) )  ->  ( r  =  p  \/  r  =  q ) )
4645anassrs 648 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( p  e. HAtoms  /\  p  C_  A
)  /\  ( q  e. HAtoms  /\  q  C_  ( _|_ `  A ) ) )  /\  r  e. HAtoms
)  /\  r  C_  ( p  vH  q
) )  ->  (
r  =  p  \/  r  =  q ) )
4746pm2.24d 143 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( p  e. HAtoms  /\  p  C_  A
)  /\  ( q  e. HAtoms  /\  q  C_  ( _|_ `  A ) ) )  /\  r  e. HAtoms
)  /\  r  C_  ( p  vH  q
) )  ->  ( -.  ( r  =  p  \/  r  =  q )  ->  -.  0H  =  0H ) )
4847ex 434 . . . . . . . . . . . . 13  |-  ( ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  ( q  e. HAtoms  /\  q  C_  ( _|_ `  A ) ) )  /\  r  e. HAtoms )  ->  ( r  C_  (
p  vH  q )  ->  ( -.  ( r  =  p  \/  r  =  q )  ->  -.  0H  =  0H ) ) )
4948com23 78 . . . . . . . . . . . 12  |-  ( ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  ( q  e. HAtoms  /\  q  C_  ( _|_ `  A ) ) )  /\  r  e. HAtoms )  ->  ( -.  ( r  =  p  \/  r  =  q )  -> 
( r  C_  (
p  vH  q )  ->  -.  0H  =  0H ) ) )
5049impd 431 . . . . . . . . . . 11  |-  ( ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  ( q  e. HAtoms  /\  q  C_  ( _|_ `  A ) ) )  /\  r  e. HAtoms )  ->  ( ( -.  (
r  =  p  \/  r  =  q )  /\  r  C_  (
p  vH  q )
)  ->  -.  0H  =  0H ) )
5143, 50syl5bi 217 . . . . . . . . . 10  |-  ( ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  ( q  e. HAtoms  /\  q  C_  ( _|_ `  A ) ) )  /\  r  e. HAtoms )  ->  ( ( r  =/=  p  /\  r  =/=  q  /\  r  C_  ( p  vH  q
) )  ->  -.  0H  =  0H )
)
5251rexlimdva 2846 . . . . . . . . 9  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  (
q  e. HAtoms  /\  q  C_  ( _|_ `  A
) ) )  -> 
( E. r  e. HAtoms  ( r  =/=  p  /\  r  =/=  q  /\  r  C_  ( p  vH  q ) )  ->  -.  0H  =  0H ) )
5339, 52mpd 15 . . . . . . . 8  |-  ( ( ( p  e. HAtoms  /\  p  C_  A )  /\  (
q  e. HAtoms  /\  q  C_  ( _|_ `  A
) ) )  ->  -.  0H  =  0H )
5453an4s 822 . . . . . . 7  |-  ( ( ( p  e. HAtoms  /\  q  e. HAtoms )  /\  ( p 
C_  A  /\  q  C_  ( _|_ `  A
) ) )  ->  -.  0H  =  0H )
5554ex 434 . . . . . 6  |-  ( ( p  e. HAtoms  /\  q  e. HAtoms )  ->  ( (
p  C_  A  /\  q  C_  ( _|_ `  A
) )  ->  -.  0H  =  0H )
)
5655rexlimivv 2851 . . . . 5  |-  ( E. p  e. HAtoms  E. q  e. HAtoms  ( p  C_  A  /\  q  C_  ( _|_ `  A ) )  ->  -.  0H  =  0H )
5713, 56syl 16 . . . 4  |-  ( ( A  =/=  0H  /\  ( _|_ `  A )  =/=  0H )  ->  -.  0H  =  0H )
586, 57sylbi 195 . . 3  |-  ( -.  ( A  =  0H  \/  ( _|_ `  A
)  =  0H )  ->  -.  0H  =  0H )
591, 58mt4 137 . 2  |-  ( A  =  0H  \/  ( _|_ `  A )  =  0H )
60 fveq2 5696 . . . 4  |-  ( ( _|_ `  A )  =  0H  ->  ( _|_ `  ( _|_ `  A
) )  =  ( _|_ `  0H ) )
617ococi 24813 . . . 4  |-  ( _|_ `  ( _|_ `  A
) )  =  A
62 choc0 24734 . . . 4  |-  ( _|_ `  0H )  =  ~H
6360, 61, 623eqtr3g 2498 . . 3  |-  ( ( _|_ `  A )  =  0H  ->  A  =  ~H )
6463orim2i 518 . 2  |-  ( ( A  =  0H  \/  ( _|_ `  A )  =  0H )  -> 
( A  =  0H  \/  A  =  ~H ) )
6559, 64ax-mp 5 1  |-  ( A  =  0H  \/  A  =  ~H )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611   E.wrex 2721    C_ wss 3333   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   ~Hchil 24326   CHcch 24336   _|_cort 24337    vH chj 24340   0Hc0h 24342    C_H ccm 24343  HAtomscat 24372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cc 8609  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367  ax-hilex 24406  ax-hfvadd 24407  ax-hvcom 24408  ax-hvass 24409  ax-hv0cl 24410  ax-hvaddid 24411  ax-hfvmul 24412  ax-hvmulid 24413  ax-hvmulass 24414  ax-hvdistr1 24415  ax-hvdistr2 24416  ax-hvmul0 24417  ax-hfi 24486  ax-his1 24489  ax-his2 24490  ax-his3 24491  ax-his4 24492  ax-hcompl 24609
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-omul 6930  df-er 7106  df-map 7221  df-pm 7222  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-fi 7666  df-sup 7696  df-oi 7729  df-card 8114  df-acn 8117  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-q 10959  df-rp 10997  df-xneg 11094  df-xadd 11095  df-xmul 11096  df-ioo 11309  df-ico 11311  df-icc 11312  df-fz 11443  df-fzo 11554  df-fl 11647  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-rlim 12972  df-sum 13169  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-hom 14267  df-cco 14268  df-rest 14366  df-topn 14367  df-0g 14385  df-gsum 14386  df-topgen 14387  df-pt 14388  df-prds 14391  df-xrs 14445  df-qtop 14450  df-imas 14451  df-xps 14453  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-submnd 15470  df-mulg 15553  df-cntz 15840  df-cmn 16284  df-psmet 17814  df-xmet 17815  df-met 17816  df-bl 17817  df-mopn 17818  df-fbas 17819  df-fg 17820  df-cnfld 17824  df-top 18508  df-bases 18510  df-topon 18511  df-topsp 18512  df-cld 18628  df-ntr 18629  df-cls 18630  df-nei 18707  df-cn 18836  df-cnp 18837  df-lm 18838  df-haus 18924  df-tx 19140  df-hmeo 19333  df-fil 19424  df-fm 19516  df-flim 19517  df-flf 19518  df-xms 19900  df-ms 19901  df-tms 19902  df-cfil 20771  df-cau 20772  df-cmet 20773  df-grpo 23683  df-gid 23684  df-ginv 23685  df-gdiv 23686  df-ablo 23774  df-subgo 23794  df-vc 23929  df-nv 23975  df-va 23978  df-ba 23979  df-sm 23980  df-0v 23981  df-vs 23982  df-nmcv 23983  df-ims 23984  df-dip 24101  df-ssp 24125  df-ph 24218  df-cbn 24269  df-hnorm 24375  df-hba 24376  df-hvsub 24378  df-hlim 24379  df-hcau 24380  df-sh 24614  df-ch 24629  df-oc 24660  df-ch0 24661  df-shs 24716  df-span 24717  df-chj 24718  df-chsup 24719  df-pjh 24803  df-cm 24991  df-cv 25688  df-at 25747
This theorem is referenced by:  chirred  25804
  Copyright terms: Public domain W3C validator