MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmulgsum Structured version   Unicode version

Theorem chfacfscmulgsum 19655
Description: Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a  |-  A  =  ( N Mat  R )
chfacfisf.b  |-  B  =  ( Base `  A
)
chfacfisf.p  |-  P  =  (Poly1 `  R )
chfacfisf.y  |-  Y  =  ( N Mat  P )
chfacfisf.r  |-  .X.  =  ( .r `  Y )
chfacfisf.s  |-  .-  =  ( -g `  Y )
chfacfisf.0  |-  .0.  =  ( 0g `  Y )
chfacfisf.t  |-  T  =  ( N matToPolyMat  R )
chfacfisf.g  |-  G  =  ( n  e.  NN0  |->  if ( n  =  0 ,  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) ) ,  if ( n  =  (
s  +  1 ) ,  ( T `  ( b `  s
) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `
 ( n  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) ) ) ) ) ) )
chfacfscmulcl.x  |-  X  =  (var1 `  R )
chfacfscmulcl.m  |-  .x.  =  ( .s `  Y )
chfacfscmulcl.e  |-  .^  =  (.g
`  (mulGrp `  P )
)
chfacfscmulgsum.p  |-  .+  =  ( +g  `  Y )
Assertion
Ref Expression
chfacfscmulgsum  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  NN0  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) ) ) )  .+  ( ( ( ( s  +  1 ) 
.^  X )  .x.  ( T `  ( b `
 s ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  0
) ) ) ) ) )
Distinct variable groups:    B, n    n, M    n, N    R, n    n, Y    n, b    n, s, B    .0. , n    B, i, s    i, G   
i, M    i, N    R, i    i, X    i, Y   
.^ , i    .x. , b, i    T, n    .- , n    .X. , n    i, n
Allowed substitution hints:    A( i, n, s, b)    B( b)    P( i, n, s, b)    .+ ( i, n, s, b)    R( s, b)    T( i, s, b)    .x. ( n, s)    .X. ( i, s, b)    .^ ( n, s, b)    G( n, s, b)    M( s, b)    .- ( i,
s, b)    N( s,
b)    X( n, s, b)    Y( s, b)    .0. ( i,
s, b)

Proof of Theorem chfacfscmulgsum
StepHypRef Expression
1 eqid 2404 . . 3  |-  ( Base `  Y )  =  (
Base `  Y )
2 chfacfisf.0 . . 3  |-  .0.  =  ( 0g `  Y )
3 chfacfscmulgsum.p . . 3  |-  .+  =  ( +g  `  Y )
4 crngring 17531 . . . . . . . 8  |-  ( R  e.  CRing  ->  R  e.  Ring )
54anim2i 569 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( N  e.  Fin  /\  R  e.  Ring )
)
653adant3 1019 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  ( N  e.  Fin  /\  R  e.  Ring ) )
7 chfacfisf.p . . . . . . 7  |-  P  =  (Poly1 `  R )
8 chfacfisf.y . . . . . . 7  |-  Y  =  ( N Mat  P )
97, 8pmatring 19488 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  Y  e.  Ring )
106, 9syl 17 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  Y  e.  Ring )
11 ringcmn 17551 . . . . 5  |-  ( Y  e.  Ring  ->  Y  e. CMnd
)
1210, 11syl 17 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  Y  e. CMnd )
1312adantr 465 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  Y  e. CMnd )
14 nn0ex 10844 . . . 4  |-  NN0  e.  _V
1514a1i 11 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  NN0  e.  _V )
16 simpll 754 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  NN0 )  ->  ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B ) )
17 simplr 756 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  NN0 )  ->  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )
18 simpr 461 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  NN0 )  ->  i  e.  NN0 )
1916, 17, 183jca 1179 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  NN0 )  ->  (
( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) )  /\  i  e.  NN0 ) )
20 chfacfisf.a . . . . 5  |-  A  =  ( N Mat  R )
21 chfacfisf.b . . . . 5  |-  B  =  ( Base `  A
)
22 chfacfisf.r . . . . 5  |-  .X.  =  ( .r `  Y )
23 chfacfisf.s . . . . 5  |-  .-  =  ( -g `  Y )
24 chfacfisf.t . . . . 5  |-  T  =  ( N matToPolyMat  R )
25 chfacfisf.g . . . . 5  |-  G  =  ( n  e.  NN0  |->  if ( n  =  0 ,  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) ) ,  if ( n  =  (
s  +  1 ) ,  ( T `  ( b `  s
) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `
 ( n  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) ) ) ) ) ) )
26 chfacfscmulcl.x . . . . 5  |-  X  =  (var1 `  R )
27 chfacfscmulcl.m . . . . 5  |-  .x.  =  ( .s `  Y )
28 chfacfscmulcl.e . . . . 5  |-  .^  =  (.g
`  (mulGrp `  P )
)
2920, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 19652 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) )  /\  i  e.  NN0 )  -> 
( ( i  .^  X )  .x.  ( G `  i )
)  e.  ( Base `  Y ) )
3019, 29syl 17 . . 3  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  NN0 )  ->  (
( i  .^  X
)  .x.  ( G `  i ) )  e.  ( Base `  Y
) )
3120, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulfsupp 19654 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( i  e. 
NN0  |->  ( ( i 
.^  X )  .x.  ( G `  i ) ) ) finSupp  .0.  )
32 nn0disj 11848 . . . 4  |-  ( ( 0 ... ( s  +  1 ) )  i^i  ( ZZ>= `  (
( s  +  1 )  +  1 ) ) )  =  (/)
3332a1i 11 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( 0 ... ( s  +  1 ) )  i^i  ( ZZ>= `  ( (
s  +  1 )  +  1 ) ) )  =  (/) )
34 nnnn0 10845 . . . . . 6  |-  ( s  e.  NN  ->  s  e.  NN0 )
35 peano2nn0 10879 . . . . . 6  |-  ( s  e.  NN0  ->  ( s  +  1 )  e. 
NN0 )
3634, 35syl 17 . . . . 5  |-  ( s  e.  NN  ->  (
s  +  1 )  e.  NN0 )
37 nn0split 11847 . . . . 5  |-  ( ( s  +  1 )  e.  NN0  ->  NN0  =  ( ( 0 ... ( s  +  1 ) )  u.  ( ZZ>=
`  ( ( s  +  1 )  +  1 ) ) ) )
3836, 37syl 17 . . . 4  |-  ( s  e.  NN  ->  NN0  =  ( ( 0 ... ( s  +  1 ) )  u.  ( ZZ>=
`  ( ( s  +  1 )  +  1 ) ) ) )
3938ad2antrl 728 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  NN0  =  (
( 0 ... (
s  +  1 ) )  u.  ( ZZ>= `  ( ( s  +  1 )  +  1 ) ) ) )
401, 2, 3, 13, 15, 30, 31, 33, 39gsumsplit2 17274 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  NN0  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( Y  gsumg  ( i  e.  (
ZZ>= `  ( ( s  +  1 )  +  1 ) )  |->  ( ( i  .^  X
)  .x.  ( G `  i ) ) ) ) ) )
41 simpll 754 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( ZZ>= `  ( (
s  +  1 )  +  1 ) ) )  ->  ( N  e.  Fin  /\  R  e. 
CRing  /\  M  e.  B
) )
42 simplr 756 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( ZZ>= `  ( (
s  +  1 )  +  1 ) ) )  ->  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )
43 nncn 10586 . . . . . . . . . . . . 13  |-  ( s  e.  NN  ->  s  e.  CC )
44 add1p1 10831 . . . . . . . . . . . . 13  |-  ( s  e.  CC  ->  (
( s  +  1 )  +  1 )  =  ( s  +  2 ) )
4543, 44syl 17 . . . . . . . . . . . 12  |-  ( s  e.  NN  ->  (
( s  +  1 )  +  1 )  =  ( s  +  2 ) )
4645ad2antrl 728 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( s  +  1 )  +  1 )  =  ( s  +  2 ) )
4746fveq2d 5855 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ZZ>= `  (
( s  +  1 )  +  1 ) )  =  ( ZZ>= `  ( s  +  2 ) ) )
4847eleq2d 2474 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( i  e.  ( ZZ>= `  ( (
s  +  1 )  +  1 ) )  <-> 
i  e.  ( ZZ>= `  ( s  +  2 ) ) ) )
4948biimpa 484 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( ZZ>= `  ( (
s  +  1 )  +  1 ) ) )  ->  i  e.  ( ZZ>= `  ( s  +  2 ) ) )
5020, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmul0 19653 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) )  /\  i  e.  ( ZZ>= `  ( s  +  2 ) ) )  -> 
( ( i  .^  X )  .x.  ( G `  i )
)  =  .0.  )
5141, 42, 49, 50syl3anc 1232 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( ZZ>= `  ( (
s  +  1 )  +  1 ) ) )  ->  ( (
i  .^  X )  .x.  ( G `  i
) )  =  .0.  )
5251mpteq2dva 4483 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( i  e.  ( ZZ>= `  ( (
s  +  1 )  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) )  =  ( i  e.  ( ZZ>= `  ( ( s  +  1 )  +  1 ) )  |->  .0.  )
)
5352oveq2d 6296 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( ZZ>= `  (
( s  +  1 )  +  1 ) )  |->  ( ( i 
.^  X )  .x.  ( G `  i ) ) ) )  =  ( Y  gsumg  ( i  e.  (
ZZ>= `  ( ( s  +  1 )  +  1 ) )  |->  .0.  ) ) )
544, 9sylan2 474 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  Y  e.  Ring )
55 ringmnd 17529 . . . . . . . . . 10  |-  ( Y  e.  Ring  ->  Y  e. 
Mnd )
5654, 55syl 17 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  Y  e.  Mnd )
57563adant3 1019 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  Y  e.  Mnd )
58 fvex 5861 . . . . . . . 8  |-  ( ZZ>= `  ( ( s  +  1 )  +  1 ) )  e.  _V
5957, 58jctir 538 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  ( Y  e.  Mnd  /\  ( ZZ>=
`  ( ( s  +  1 )  +  1 ) )  e. 
_V ) )
6059adantr 465 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  e. 
Mnd  /\  ( ZZ>= `  ( ( s  +  1 )  +  1 ) )  e.  _V ) )
612gsumz 16331 . . . . . 6  |-  ( ( Y  e.  Mnd  /\  ( ZZ>= `  ( (
s  +  1 )  +  1 ) )  e.  _V )  -> 
( Y  gsumg  ( i  e.  (
ZZ>= `  ( ( s  +  1 )  +  1 ) )  |->  .0.  ) )  =  .0.  )
6260, 61syl 17 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( ZZ>= `  (
( s  +  1 )  +  1 ) )  |->  .0.  ) )  =  .0.  )
6353, 62eqtrd 2445 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( ZZ>= `  (
( s  +  1 )  +  1 ) )  |->  ( ( i 
.^  X )  .x.  ( G `  i ) ) ) )  =  .0.  )
6463oveq2d 6296 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( Y 
gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( Y  gsumg  ( i  e.  (
ZZ>= `  ( ( s  +  1 )  +  1 ) )  |->  ( ( i  .^  X
)  .x.  ( G `  i ) ) ) ) )  =  ( ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  .0.  ) )
6557adantr 465 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  Y  e.  Mnd )
66 fzfid 12126 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( 0 ... ( s  +  1 ) )  e.  Fin )
67 elfznn0 11828 . . . . . . . 8  |-  ( i  e.  ( 0 ... ( s  +  1 ) )  ->  i  e.  NN0 )
6867, 19sylan2 474 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 0 ... (
s  +  1 ) ) )  ->  (
( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) )  /\  i  e.  NN0 ) )
6968, 29syl 17 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 0 ... (
s  +  1 ) ) )  ->  (
( i  .^  X
)  .x.  ( G `  i ) )  e.  ( Base `  Y
) )
7069ralrimiva 2820 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  A. i  e.  ( 0 ... ( s  +  1 ) ) ( ( i  .^  X )  .x.  ( G `  i )
)  e.  ( Base `  Y ) )
711, 13, 66, 70gsummptcl 17317 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  e.  ( Base `  Y
) )
721, 3, 2mndrid 16268 . . . 4  |-  ( ( Y  e.  Mnd  /\  ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  e.  ( Base `  Y
) )  ->  (
( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  .0.  )  =  ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) ) )
7365, 71, 72syl2anc 661 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( Y 
gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  .0.  )  =  ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) ) )
7464, 73eqtrd 2445 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( Y 
gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( Y  gsumg  ( i  e.  (
ZZ>= `  ( ( s  +  1 )  +  1 ) )  |->  ( ( i  .^  X
)  .x.  ( G `  i ) ) ) ) )  =  ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) ) )
7534ad2antrl 728 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  s  e.  NN0 )
761, 3, 13, 75, 69gsummptfzsplit 17277 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 0 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( Y  gsumg  ( i  e.  {
( s  +  1 ) }  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) ) ) )
77 elfznn0 11828 . . . . . . 7  |-  ( i  e.  ( 0 ... s )  ->  i  e.  NN0 )
7877, 30sylan2 474 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 0 ... s
) )  ->  (
( i  .^  X
)  .x.  ( G `  i ) )  e.  ( Base `  Y
) )
791, 3, 13, 75, 78gsummptfzsplitl 17278 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( 0 ... s )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( Y  gsumg  ( i  e.  {
0 }  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) ) ) )
80 0nn0 10853 . . . . . . . 8  |-  0  e.  NN0
8180a1i 11 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  0  e.  NN0 )
8220, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 19652 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) )  /\  0  e.  NN0 )  -> 
( ( 0  .^  X )  .x.  ( G `  0 )
)  e.  ( Base `  Y ) )
8381, 82mpd3an3 1329 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( 0 
.^  X )  .x.  ( G `  0 ) )  e.  ( Base `  Y ) )
84 oveq1 6287 . . . . . . . . 9  |-  ( i  =  0  ->  (
i  .^  X )  =  ( 0  .^  X ) )
85 fveq2 5851 . . . . . . . . 9  |-  ( i  =  0  ->  ( G `  i )  =  ( G ` 
0 ) )
8684, 85oveq12d 6298 . . . . . . . 8  |-  ( i  =  0  ->  (
( i  .^  X
)  .x.  ( G `  i ) )  =  ( ( 0  .^  X )  .x.  ( G `  0 )
) )
871, 86gsumsn 17304 . . . . . . 7  |-  ( ( Y  e.  Mnd  /\  0  e.  NN0  /\  (
( 0  .^  X
)  .x.  ( G `  0 ) )  e.  ( Base `  Y
) )  ->  ( Y  gsumg  ( i  e.  {
0 }  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( 0 
.^  X )  .x.  ( G `  0 ) ) )
8865, 81, 83, 87syl3anc 1232 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  { 0 } 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  =  ( ( 0  .^  X )  .x.  ( G `  0 )
) )
8988oveq2d 6296 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( Y  gsumg  ( i  e.  {
0 }  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) ) )  =  ( ( Y  gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( 0  .^  X )  .x.  ( G `  0 )
) ) )
9079, 89eqtrd 2445 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( 0 ... s )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( 0  .^  X )  .x.  ( G `  0 )
) ) )
91 ovex 6308 . . . . . 6  |-  ( s  +  1 )  e. 
_V
9291a1i 11 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( s  +  1 )  e.  _V )
93 1nn0 10854 . . . . . . . 8  |-  1  e.  NN0
9493a1i 11 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  1  e.  NN0 )
9575, 94nn0addcld 10899 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( s  +  1 )  e.  NN0 )
9620, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 19652 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) )  /\  ( s  +  1 )  e.  NN0 )  ->  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  ( s  +  1 ) ) )  e.  ( Base `  Y ) )
9795, 96mpd3an3 1329 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( s  +  1 ) 
.^  X )  .x.  ( G `  ( s  +  1 ) ) )  e.  ( Base `  Y ) )
98 oveq1 6287 . . . . . . 7  |-  ( i  =  ( s  +  1 )  ->  (
i  .^  X )  =  ( ( s  +  1 )  .^  X ) )
99 fveq2 5851 . . . . . . 7  |-  ( i  =  ( s  +  1 )  ->  ( G `  i )  =  ( G `  ( s  +  1 ) ) )
10098, 99oveq12d 6298 . . . . . 6  |-  ( i  =  ( s  +  1 )  ->  (
( i  .^  X
)  .x.  ( G `  i ) )  =  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  ( s  +  1 ) ) ) )
1011, 100gsumsn 17304 . . . . 5  |-  ( ( Y  e.  Mnd  /\  ( s  +  1 )  e.  _V  /\  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  ( s  +  1 ) ) )  e.  ( Base `  Y ) )  -> 
( Y  gsumg  ( i  e.  {
( s  +  1 ) }  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( ( s  +  1 ) 
.^  X )  .x.  ( G `  ( s  +  1 ) ) ) )
10265, 92, 97, 101syl3anc 1232 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  { ( s  +  1 ) } 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  =  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  ( s  +  1 ) ) ) )
10390, 102oveq12d 6298 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( Y 
gsumg  ( i  e.  ( 0 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( Y  gsumg  ( i  e.  {
( s  +  1 ) }  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) ) )  =  ( ( ( Y  gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( 0  .^  X )  .x.  ( G `  0 )
) )  .+  (
( ( s  +  1 )  .^  X
)  .x.  ( G `  ( s  +  1 ) ) ) ) )
104 fzfid 12126 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( 1 ... s )  e.  Fin )
105 simpll 754 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B ) )
106 simplr 756 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )
107 elfznn 11770 . . . . . . . . . 10  |-  ( i  e.  ( 1 ... s )  ->  i  e.  NN )
108107nnnn0d 10895 . . . . . . . . 9  |-  ( i  e.  ( 1 ... s )  ->  i  e.  NN0 )
109108adantl 466 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  i  e.  NN0 )
110105, 106, 109, 29syl3anc 1232 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  (
( i  .^  X
)  .x.  ( G `  i ) )  e.  ( Base `  Y
) )
111110ralrimiva 2820 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  A. i  e.  ( 1 ... s ) ( ( i  .^  X )  .x.  ( G `  i )
)  e.  ( Base `  Y ) )
1121, 13, 104, 111gsummptcl 17317 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( 1 ... s )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  e.  ( Base `  Y
) )
1131, 3mndass 16256 . . . . 5  |-  ( ( Y  e.  Mnd  /\  ( ( Y  gsumg  ( i  e.  ( 1 ... s )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  e.  ( Base `  Y
)  /\  ( (
0  .^  X )  .x.  ( G `  0
) )  e.  (
Base `  Y )  /\  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  ( s  +  1 ) ) )  e.  ( Base `  Y ) ) )  ->  ( ( ( Y  gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( 0  .^  X )  .x.  ( G `  0 )
) )  .+  (
( ( s  +  1 )  .^  X
)  .x.  ( G `  ( s  +  1 ) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( ( 0 
.^  X )  .x.  ( G `  0 ) )  .+  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  (
s  +  1 ) ) ) ) ) )
11465, 112, 83, 97, 113syl13anc 1234 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( Y  gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( 0  .^  X )  .x.  ( G `  0 )
) )  .+  (
( ( s  +  1 )  .^  X
)  .x.  ( G `  ( s  +  1 ) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( ( 0 
.^  X )  .x.  ( G `  0 ) )  .+  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  (
s  +  1 ) ) ) ) ) )
11525a1i 11 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  G  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (  .0.  .-  ( ( T `  M )  .X.  ( T `  (
b `  0 )
) ) ) ,  if ( n  =  ( s  +  1 ) ,  ( T `
 ( b `  s ) ) ,  if ( ( s  +  1 )  < 
n ,  .0.  , 
( ( T `  ( b `  (
n  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  n
) ) ) ) ) ) ) ) )
116107nnne0d 10623 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... s )  ->  i  =/=  0 )
117116ad2antlr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  i  =/=  0 )
118 neeq1 2686 . . . . . . . . . . . . . 14  |-  ( n  =  i  ->  (
n  =/=  0  <->  i  =/=  0 ) )
119118adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  (
n  =/=  0  <->  i  =/=  0 ) )
120117, 119mpbird 234 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  n  =/=  0 )
121 eqneqall 2612 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
n  =/=  0  ->  .0.  =  ( T `  ( b `  (
i  -  1 ) ) ) ) )
122120, 121mpan9 469 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  ->  .0.  =  ( T `  ( b `  (
i  -  1 ) ) ) )
123 simplr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  ->  n  =  i )
124 eqeq1 2408 . . . . . . . . . . . . . . . . 17  |-  ( 0  =  n  ->  (
0  =  i  <->  n  =  i ) )
125124eqcoms 2416 . . . . . . . . . . . . . . . 16  |-  ( n  =  0  ->  (
0  =  i  <->  n  =  i ) )
126125adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  -> 
( 0  =  i  <-> 
n  =  i ) )
127123, 126mpbird 234 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  -> 
0  =  i )
128127fveq2d 5855 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  -> 
( b `  0
)  =  ( b `
 i ) )
129128fveq2d 5855 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  -> 
( T `  (
b `  0 )
)  =  ( T `
 ( b `  i ) ) )
130129oveq2d 6296 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  -> 
( ( T `  M )  .X.  ( T `  ( b `  0 ) ) )  =  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) )
131122, 130oveq12d 6298 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  n  =  0 )  -> 
(  .0.  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) )  =  ( ( T `
 ( b `  ( i  -  1 ) ) )  .-  ( ( T `  M )  .X.  ( T `  ( b `  i ) ) ) ) )
132 elfz2 11735 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 1 ... s )  <->  ( (
1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  /\  (
1  <_  i  /\  i  <_  s ) ) )
133 zleltp1 10957 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( i  e.  ZZ  /\  s  e.  ZZ )  ->  ( i  <_  s  <->  i  <  ( s  +  1 ) ) )
134133ancoms 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( s  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  <_  s  <->  i  <  ( s  +  1 ) ) )
1351343adant1 1017 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  ->  (
i  <_  s  <->  i  <  ( s  +  1 ) ) )
136135biimpcd 226 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  <_  s  ->  (
( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  ->  i  <  ( s  +  1 ) ) )
137136adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  <_  i  /\  i  <_  s )  -> 
( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  ->  i  <  ( s  +  1 ) ) )
138137impcom 430 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  s ) )  ->  i  <  ( s  +  1 ) )
139138orcd 392 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  s ) )  ->  ( i  <  ( s  +  1 )  \/  ( s  +  1 )  < 
i ) )
140 zre 10911 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( s  e.  ZZ  ->  s  e.  RR )
141 1red 9643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( s  e.  ZZ  ->  1  e.  RR )
142140, 141readdcld 9655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( s  e.  ZZ  ->  (
s  +  1 )  e.  RR )
143 zre 10911 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  e.  ZZ  ->  i  e.  RR )
144142, 143anim12ci 567 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s  e.  ZZ  /\  i  e.  ZZ )  ->  ( i  e.  RR  /\  ( s  +  1 )  e.  RR ) )
1451443adant1 1017 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  ->  (
i  e.  RR  /\  ( s  +  1 )  e.  RR ) )
146 lttri2 9700 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  RR  /\  ( s  +  1 )  e.  RR )  ->  ( i  =/=  ( s  +  1 )  <->  ( i  < 
( s  +  1 )  \/  ( s  +  1 )  < 
i ) ) )
147145, 146syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  ->  (
i  =/=  ( s  +  1 )  <->  ( i  <  ( s  +  1 )  \/  ( s  +  1 )  < 
i ) ) )
148147adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  s ) )  ->  ( i  =/=  ( s  +  1 )  <->  ( i  < 
( s  +  1 )  \/  ( s  +  1 )  < 
i ) ) )
149139, 148mpbird 234 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  i  e.  ZZ )  /\  ( 1  <_  i  /\  i  <_  s ) )  ->  i  =/=  ( s  +  1 ) )
150132, 149sylbi 197 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... s )  ->  i  =/=  ( s  +  1 ) )
151150ad2antlr 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  i  =/=  ( s  +  1 ) )
152 neeq1 2686 . . . . . . . . . . . . . . . . 17  |-  ( n  =  i  ->  (
n  =/=  ( s  +  1 )  <->  i  =/=  ( s  +  1 ) ) )
153152adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  (
n  =/=  ( s  +  1 )  <->  i  =/=  ( s  +  1 ) ) )
154151, 153mpbird 234 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  n  =/=  ( s  +  1 ) )
155154adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  -.  n  =  0 )  ->  n  =/=  (
s  +  1 ) )
156155neneqd 2607 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  -.  n  =  0 )  ->  -.  n  =  ( s  +  1 ) )
157156pm2.21d 108 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  -.  n  =  0 )  ->  ( n  =  ( s  +  1 )  ->  ( T `  ( b `  s
) )  =  ( ( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) ) )
158157imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  -.  n  =  0 )  /\  n  =  ( s  +  1 ) )  ->  ( T `  ( b `  s
) )  =  ( ( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) )
159107nnred 10593 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 1 ... s )  ->  i  e.  RR )
160 eleq1 2476 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  i  ->  (
n  e.  RR  <->  i  e.  RR ) )
161159, 160syl5ibrcom 224 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 1 ... s )  ->  (
n  =  i  ->  n  e.  RR )
)
162161adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  (
n  =  i  ->  n  e.  RR )
)
163162imp 429 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  n  e.  RR )
16475nn0red 10896 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  s  e.  RR )
165164ad2antrr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  s  e.  RR )
166 1red 9643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  1  e.  RR )
167165, 166readdcld 9655 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  (
s  +  1 )  e.  RR )
168132, 138sylbi 197 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( 1 ... s )  ->  i  <  ( s  +  1 ) )
169168ad2antlr 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  i  <  ( s  +  1 ) )
170 breq1 4400 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  i  ->  (
n  <  ( s  +  1 )  <->  i  <  ( s  +  1 ) ) )
171170adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  (
n  <  ( s  +  1 )  <->  i  <  ( s  +  1 ) ) )
172169, 171mpbird 234 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  n  <  ( s  +  1 ) )
173163, 167, 172ltnsymd 9768 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  -.  ( s  +  1 )  <  n )
174173pm2.21d 108 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  (
( s  +  1 )  <  n  ->  .0.  =  ( ( T `
 ( b `  ( i  -  1 ) ) )  .-  ( ( T `  M )  .X.  ( T `  ( b `  i ) ) ) ) ) )
175174ad2antrr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  -.  n  =  0 )  /\  -.  n  =  ( s  +  1 ) )  ->  (
( s  +  1 )  <  n  ->  .0.  =  ( ( T `
 ( b `  ( i  -  1 ) ) )  .-  ( ( T `  M )  .X.  ( T `  ( b `  i ) ) ) ) ) )
176175imp 429 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  ( s  +  1 )  <  n )  ->  .0.  =  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) )
177 simp-4r 771 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  n  =  i )
178177oveq1d 6295 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  ( n  - 
1 )  =  ( i  -  1 ) )
179178fveq2d 5855 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  ( b `  ( n  -  1
) )  =  ( b `  ( i  -  1 ) ) )
180179fveq2d 5855 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  ( T `  ( b `  (
n  -  1 ) ) )  =  ( T `  ( b `
 ( i  - 
1 ) ) ) )
181177fveq2d 5855 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  ( b `  n )  =  ( b `  i ) )
182181fveq2d 5855 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  ( T `  ( b `  n
) )  =  ( T `  ( b `
 i ) ) )
183182oveq2d 6296 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) )  =  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) )
184180, 183oveq12d 6298 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  /\  n  =  i )  /\  -.  n  =  0
)  /\  -.  n  =  ( s  +  1 ) )  /\  -.  ( s  +  1 )  <  n )  ->  ( ( T `
 ( b `  ( n  -  1
) ) )  .-  ( ( T `  M )  .X.  ( T `  ( b `  n ) ) ) )  =  ( ( T `  ( b `
 ( i  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 i ) ) ) ) )
185176, 184ifeqda 3920 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  -.  n  =  0 )  /\  -.  n  =  ( s  +  1 ) )  ->  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `
 ( n  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) ) ) )  =  ( ( T `  ( b `  (
i  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  i
) ) ) ) )
186158, 185ifeqda 3920 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  /\  -.  n  =  0 )  ->  if ( n  =  ( s  +  1 ) ,  ( T `  ( b `
 s ) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `  (
n  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  n
) ) ) ) ) )  =  ( ( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) )
187131, 186ifeqda 3920 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  i  e.  ( 1 ... s ) )  /\  n  =  i )  ->  if ( n  =  0 ,  (  .0.  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) ) ,  if ( n  =  ( s  +  1 ) ,  ( T `  ( b `
 s ) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `  (
n  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  n
) ) ) ) ) ) )  =  ( ( T `  ( b `  (
i  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  i
) ) ) ) )
188 ovex 6308 . . . . . . . . . 10  |-  ( ( T `  ( b `
 ( i  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 i ) ) ) )  e.  _V
189188a1i 11 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) )  e.  _V )
190115, 187, 109, 189fvmptd 5940 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  ( G `  i )  =  ( ( T `
 ( b `  ( i  -  1 ) ) )  .-  ( ( T `  M )  .X.  ( T `  ( b `  i ) ) ) ) )
191190oveq2d 6296 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  i  e.  ( 1 ... s
) )  ->  (
( i  .^  X
)  .x.  ( G `  i ) )  =  ( ( i  .^  X )  .x.  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) ) )
192191mpteq2dva 4483 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( i  e.  ( 1 ... s
)  |->  ( ( i 
.^  X )  .x.  ( G `  i ) ) )  =  ( i  e.  ( 1 ... s )  |->  ( ( i  .^  X
)  .x.  ( ( T `  ( b `  ( i  -  1 ) ) )  .-  ( ( T `  M )  .X.  ( T `  ( b `  i ) ) ) ) ) ) )
193192oveq2d 6296 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( 1 ... s )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( Y  gsumg  ( i  e.  ( 1 ... s )  |->  ( ( i  .^  X )  .x.  ( ( T `  ( b `  (
i  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  i
) ) ) ) ) ) ) )
19425a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  G  =  ( n  e.  NN0  |->  if ( n  =  0 ,  (  .0.  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) ) ,  if ( n  =  ( s  +  1 ) ,  ( T `  ( b `
 s ) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `  (
n  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  n
) ) ) ) ) ) ) ) )
195 nn0p1gt0 10868 . . . . . . . . . . . . . . 15  |-  ( s  e.  NN0  ->  0  < 
( s  +  1 ) )
196 0red 9629 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  NN0  ->  0  e.  RR )
197 ltne 9714 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  0  <  ( s  +  1 ) )  -> 
( s  +  1 )  =/=  0 )
198196, 197sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( s  e.  NN0  /\  0  <  ( s  +  1 ) )  -> 
( s  +  1 )  =/=  0 )
199 neeq1 2686 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( s  +  1 )  ->  (
n  =/=  0  <->  (
s  +  1 )  =/=  0 ) )
200198, 199syl5ibrcom 224 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  NN0  /\  0  <  ( s  +  1 ) )  -> 
( n  =  ( s  +  1 )  ->  n  =/=  0
) )
201195, 200mpdan 668 . . . . . . . . . . . . . 14  |-  ( s  e.  NN0  ->  ( n  =  ( s  +  1 )  ->  n  =/=  0 ) )
20234, 201syl 17 . . . . . . . . . . . . 13  |-  ( s  e.  NN  ->  (
n  =  ( s  +  1 )  ->  n  =/=  0 ) )
203202ad2antrl 728 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( n  =  ( s  +  1 )  ->  n  =/=  0 ) )
204203imp 429 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  n  =  ( s  +  1 ) )  ->  n  =/=  0 )
205 eqneqall 2612 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
n  =/=  0  -> 
(  .0.  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) )  =  ( T `  ( b `  s
) ) ) )
206204, 205mpan9 469 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  n  =  ( s  +  1 ) )  /\  n  =  0 )  ->  (  .0.  .-  ( ( T `
 M )  .X.  ( T `  ( b `
 0 ) ) ) )  =  ( T `  ( b `
 s ) ) )
207 iftrue 3893 . . . . . . . . . . 11  |-  ( n  =  ( s  +  1 )  ->  if ( n  =  (
s  +  1 ) ,  ( T `  ( b `  s
) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `
 ( n  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) ) ) ) )  =  ( T `  ( b `  s
) ) )
208207ad2antlr 727 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  /\  n  =  ( s  +  1 ) )  /\  -.  n  =  0 )  ->  if ( n  =  ( s  +  1 ) ,  ( T `  ( b `  s
) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `
 ( n  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) ) ) ) )  =  ( T `  ( b `  s
) ) )
209206, 208ifeqda 3920 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  n  =  ( s  +  1 ) )  ->  if ( n  =  0 ,  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) ) ,  if ( n  =  (
s  +  1 ) ,  ( T `  ( b `  s
) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `
 ( n  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) ) ) ) ) )  =  ( T `
 ( b `  s ) ) )
21075, 35syl 17 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( s  +  1 )  e.  NN0 )
211 fvex 5861 . . . . . . . . . 10  |-  ( T `
 ( b `  s ) )  e. 
_V
212211a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( T `  ( b `  s
) )  e.  _V )
213194, 209, 210, 212fvmptd 5940 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( G `  ( s  +  1 ) )  =  ( T `  ( b `
 s ) ) )
214213oveq2d 6296 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( s  +  1 ) 
.^  X )  .x.  ( G `  ( s  +  1 ) ) )  =  ( ( ( s  +  1 )  .^  X )  .x.  ( T `  (
b `  s )
) ) )
21543ad2ant2 1021 . . . . . . . . . . . . 13  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  R  e.  Ring )
216 eqid 2404 . . . . . . . . . . . . . 14  |-  ( Base `  P )  =  (
Base `  P )
21726, 7, 216vr1cl 18580 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  X  e.  ( Base `  P
) )
218215, 217syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  X  e.  ( Base `  P
) )
219 eqid 2404 . . . . . . . . . . . . . 14  |-  (mulGrp `  P )  =  (mulGrp `  P )
220219, 216mgpbas 17469 . . . . . . . . . . . . 13  |-  ( Base `  P )  =  (
Base `  (mulGrp `  P
) )
221 eqid 2404 . . . . . . . . . . . . . 14  |-  ( 1r
`  P )  =  ( 1r `  P
)
222219, 221ringidval 17477 . . . . . . . . . . . . 13  |-  ( 1r
`  P )  =  ( 0g `  (mulGrp `  P ) )
223220, 222, 28mulg0 16473 . . . . . . . . . . . 12  |-  ( X  e.  ( Base `  P
)  ->  ( 0 
.^  X )  =  ( 1r `  P
) )
224218, 223syl 17 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  (
0  .^  X )  =  ( 1r `  P ) )
2257ply1crng 18559 . . . . . . . . . . . . . . 15  |-  ( R  e.  CRing  ->  P  e.  CRing
)
226225anim2i 569 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( N  e.  Fin  /\  P  e.  CRing ) )
2272263adant3 1019 . . . . . . . . . . . . 13  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  ( N  e.  Fin  /\  P  e.  CRing ) )
2288matsca2 19216 . . . . . . . . . . . . 13  |-  ( ( N  e.  Fin  /\  P  e.  CRing )  ->  P  =  (Scalar `  Y
) )
229227, 228syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  P  =  (Scalar `  Y )
)
230229fveq2d 5855 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  ( 1r `  P )  =  ( 1r `  (Scalar `  Y ) ) )
231224, 230eqtrd 2445 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  (
0  .^  X )  =  ( 1r `  (Scalar `  Y ) ) )
232231adantr 465 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( 0  .^  X )  =  ( 1r `  (Scalar `  Y ) ) )
233232oveq1d 6295 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( 0 
.^  X )  .x.  ( G `  0 ) )  =  ( ( 1r `  (Scalar `  Y ) )  .x.  ( G `  0 ) ) )
2347, 8pmatlmod 19489 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  Y  e.  LMod )
2354, 234sylan2 474 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  Y  e.  LMod )
2362353adant3 1019 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  Y  e.  LMod )
237236adantr 465 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  Y  e.  LMod )
23820, 21, 7, 8, 22, 23, 2, 24, 25chfacfisf 19649 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  G : NN0 --> (
Base `  Y )
)
2394, 238syl3anl2 1281 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  G : NN0 --> (
Base `  Y )
)
240239, 81ffvelrnd 6012 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( G ` 
0 )  e.  (
Base `  Y )
)
241 eqid 2404 . . . . . . . . . 10  |-  (Scalar `  Y )  =  (Scalar `  Y )
242 eqid 2404 . . . . . . . . . 10  |-  ( 1r
`  (Scalar `  Y )
)  =  ( 1r
`  (Scalar `  Y )
)
2431, 241, 27, 242lmodvs1 17862 . . . . . . . . 9  |-  ( ( Y  e.  LMod  /\  ( G `  0 )  e.  ( Base `  Y
) )  ->  (
( 1r `  (Scalar `  Y ) )  .x.  ( G `  0 ) )  =  ( G `
 0 ) )
244237, 240, 243syl2anc 661 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( 1r
`  (Scalar `  Y )
)  .x.  ( G `  0 ) )  =  ( G ` 
0 ) )
245 iftrue 3893 . . . . . . . . . 10  |-  ( n  =  0  ->  if ( n  =  0 ,  (  .0.  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) ) ,  if ( n  =  ( s  +  1 ) ,  ( T `  ( b `
 s ) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `  (
n  -  1 ) ) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  n
) ) ) ) ) ) )  =  (  .0.  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) ) )
246245adantl 466 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( s  e.  NN  /\  b  e.  ( B  ^m  (
0 ... s ) ) ) )  /\  n  =  0 )  ->  if ( n  =  0 ,  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) ) ,  if ( n  =  (
s  +  1 ) ,  ( T `  ( b `  s
) ) ,  if ( ( s  +  1 )  <  n ,  .0.  ,  ( ( T `  ( b `
 ( n  - 
1 ) ) ) 
.-  ( ( T `
 M )  .X.  ( T `  ( b `
 n ) ) ) ) ) ) )  =  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) ) )
247 ovex 6308 . . . . . . . . . 10  |-  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) )  e.  _V
248247a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) )  e.  _V )
249194, 246, 81, 248fvmptd 5940 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( G ` 
0 )  =  (  .0.  .-  ( ( T `  M )  .X.  ( T `  (
b `  0 )
) ) ) )
250233, 244, 2493eqtrd 2449 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( 0 
.^  X )  .x.  ( G `  0 ) )  =  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) ) )
251214, 250oveq12d 6298 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( ( s  +  1 )  .^  X )  .x.  ( G `  (
s  +  1 ) ) )  .+  (
( 0  .^  X
)  .x.  ( G `  0 ) ) )  =  ( ( ( ( s  +  1 )  .^  X
)  .x.  ( T `  ( b `  s
) ) )  .+  (  .0.  .-  ( ( T `  M )  .X.  ( T `  (
b `  0 )
) ) ) ) )
2521, 3cmncom 17140 . . . . . . 7  |-  ( ( Y  e. CMnd  /\  (
( 0  .^  X
)  .x.  ( G `  0 ) )  e.  ( Base `  Y
)  /\  ( (
( s  +  1 )  .^  X )  .x.  ( G `  (
s  +  1 ) ) )  e.  (
Base `  Y )
)  ->  ( (
( 0  .^  X
)  .x.  ( G `  0 ) ) 
.+  ( ( ( s  +  1 ) 
.^  X )  .x.  ( G `  ( s  +  1 ) ) ) )  =  ( ( ( ( s  +  1 )  .^  X )  .x.  ( G `  ( s  +  1 ) ) )  .+  ( ( 0  .^  X )  .x.  ( G `  0
) ) ) )
25313, 83, 97, 252syl3anc 1232 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( 0  .^  X )  .x.  ( G `  0
) )  .+  (
( ( s  +  1 )  .^  X
)  .x.  ( G `  ( s  +  1 ) ) ) )  =  ( ( ( ( s  +  1 )  .^  X )  .x.  ( G `  (
s  +  1 ) ) )  .+  (
( 0  .^  X
)  .x.  ( G `  0 ) ) ) )
254 ringgrp 17525 . . . . . . . . 9  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
25510, 254syl 17 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  Y  e.  Grp )
256255adantr 465 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  Y  e.  Grp )
257214, 97eqeltrrd 2493 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( s  +  1 ) 
.^  X )  .x.  ( T `  ( b `
 s ) ) )  e.  ( Base `  Y ) )
25810adantr 465 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  Y  e.  Ring )
25924, 20, 21, 7, 8mat2pmatbas 19521 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( T `  M )  e.  ( Base `  Y
) )
2604, 259syl3an2 1266 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  ( T `  M )  e.  ( Base `  Y
) )
261260adantr 465 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( T `  M )  e.  (
Base `  Y )
)
262 simpl1 1002 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  N  e.  Fin )
263215adantr 465 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  R  e.  Ring )
264 elmapi 7480 . . . . . . . . . . . 12  |-  ( b  e.  ( B  ^m  ( 0 ... s
) )  ->  b : ( 0 ... s ) --> B )
265264adantl 466 . . . . . . . . . . 11  |-  ( ( s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) )  -> 
b : ( 0 ... s ) --> B )
266265adantl 466 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  b : ( 0 ... s ) --> B )
267 0elfz 11830 . . . . . . . . . . . 12  |-  ( s  e.  NN0  ->  0  e.  ( 0 ... s
) )
26834, 267syl 17 . . . . . . . . . . 11  |-  ( s  e.  NN  ->  0  e.  ( 0 ... s
) )
269268ad2antrl 728 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  0  e.  ( 0 ... s ) )
270266, 269ffvelrnd 6012 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( b ` 
0 )  e.  B
)
27124, 20, 21, 7, 8mat2pmatbas 19521 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  (
b `  0 )  e.  B )  ->  ( T `  ( b `  0 ) )  e.  ( Base `  Y
) )
272262, 263, 270, 271syl3anc 1232 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( T `  ( b `  0
) )  e.  (
Base `  Y )
)
2731, 22ringcl 17534 . . . . . . . 8  |-  ( ( Y  e.  Ring  /\  ( T `  M )  e.  ( Base `  Y
)  /\  ( T `  ( b `  0
) )  e.  (
Base `  Y )
)  ->  ( ( T `  M )  .X.  ( T `  (
b `  0 )
) )  e.  (
Base `  Y )
)
274258, 261, 272, 273syl3anc 1232 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( T `
 M )  .X.  ( T `  ( b `
 0 ) ) )  e.  ( Base `  Y ) )
2751, 2, 23, 3grpsubadd0sub 16451 . . . . . . 7  |-  ( ( Y  e.  Grp  /\  ( ( ( s  +  1 )  .^  X )  .x.  ( T `  ( b `  s ) ) )  e.  ( Base `  Y
)  /\  ( ( T `  M )  .X.  ( T `  (
b `  0 )
) )  e.  (
Base `  Y )
)  ->  ( (
( ( s  +  1 )  .^  X
)  .x.  ( T `  ( b `  s
) ) )  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) )  =  ( ( ( ( s  +  1 )  .^  X )  .x.  ( T `  ( b `  s ) ) ) 
.+  (  .0.  .-  ( ( T `  M )  .X.  ( T `  ( b `  0 ) ) ) ) ) )
276256, 257, 274, 275syl3anc 1232 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( ( s  +  1 )  .^  X )  .x.  ( T `  (
b `  s )
) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) )  =  ( ( ( ( s  +  1 )  .^  X )  .x.  ( T `  (
b `  s )
) )  .+  (  .0.  .-  ( ( T `
 M )  .X.  ( T `  ( b `
 0 ) ) ) ) ) )
277251, 253, 2763eqtr4d 2455 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( 0  .^  X )  .x.  ( G `  0
) )  .+  (
( ( s  +  1 )  .^  X
)  .x.  ( G `  ( s  +  1 ) ) ) )  =  ( ( ( ( s  +  1 )  .^  X )  .x.  ( T `  (
b `  s )
) )  .-  (
( T `  M
)  .X.  ( T `  ( b `  0
) ) ) ) )
278193, 277oveq12d 6298 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( ( 0 
.^  X )  .x.  ( G `  0 ) )  .+  ( ( ( s  +  1 )  .^  X )  .x.  ( G `  (
s  +  1 ) ) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) ) ) )  .+  ( ( ( ( s  +  1 ) 
.^  X )  .x.  ( T `  ( b `
 s ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  0
) ) ) ) ) )
279114, 278eqtrd 2445 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( ( ( Y  gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  ( G `  i )
) ) )  .+  ( ( 0  .^  X )  .x.  ( G `  0 )
) )  .+  (
( ( s  +  1 )  .^  X
)  .x.  ( G `  ( s  +  1 ) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) ) ) )  .+  ( ( ( ( s  +  1 ) 
.^  X )  .x.  ( T `  ( b `
 s ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  0
) ) ) ) ) )
28076, 103, 2793eqtrd 2449 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  ( 0 ... ( s  +  1 ) )  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) ) ) )  .+  ( ( ( ( s  +  1 ) 
.^  X )  .x.  ( T `  ( b `
 s ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  0
) ) ) ) ) )
28140, 74, 2803eqtrd 2449 1  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
s  e.  NN  /\  b  e.  ( B  ^m  ( 0 ... s
) ) ) )  ->  ( Y  gsumg  ( i  e.  NN0  |->  ( ( i  .^  X )  .x.  ( G `  i
) ) ) )  =  ( ( Y 
gsumg  ( i  e.  ( 1 ... s ) 
|->  ( ( i  .^  X )  .x.  (
( T `  (
b `  ( i  -  1 ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  i
) ) ) ) ) ) )  .+  ( ( ( ( s  +  1 ) 
.^  X )  .x.  ( T `  ( b `
 s ) ) )  .-  ( ( T `  M ) 
.X.  ( T `  ( b `  0
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    \/ wo 368    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   _Vcvv 3061    u. cun 3414    i^i cin 3415   (/)c0 3740   ifcif 3887   {csn 3974   class class class wbr 4397    |-> cmpt 4455   -->wf 5567   ` cfv 5571  (class class class)co 6280    ^m cmap 7459   Fincfn 7556   CCcc 9522   RRcr 9523   0cc0 9524   1c1 9525    + caddc 9527    < clt 9660    <_ cle 9661    - cmin 9843   NNcn 10578   2c2 10628   NN0cn0 10838   ZZcz 10907   ZZ>=cuz 11129   ...cfz 11728   Basecbs 14843   +g cplusg 14911   .rcmulr 14912  Scalarcsca 14914   .scvsca 14915   0gc0g 15056    gsumg cgsu 15057   Mndcmnd 16245   Grpcgrp 16379   -gcsg 16381  .gcmg 16382  CMndccmn 17124  mulGrpcmgp 17463   1rcur 17475   Ringcrg 17520   CRingccrg 17521   LModclmod 17834  var1cv1 18537  Poly1cpl1 18538   Mat cmat 19203   matToPolyMat cmat2pmat 19499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-ot 3983  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-of 6523  df-ofr 6524  df-om 6686  df-1st 6786  df-2nd 6787  df-supp 6905  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-2o 7170  df-oadd 7173  df-er 7350  df-map 7461  df-pm