MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem3 Structured version   Unicode version

Theorem chebbnd1lem3 24172
Description: Lemma for chebbnd1 24173: get a lower bound on π ( N )  /  ( N  /  log ( N ) ) that is independent of  N. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1  |-  M  =  ( |_ `  ( N  /  2 ) )
Assertion
Ref Expression
chebbnd1lem3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) )

Proof of Theorem chebbnd1lem3
StepHypRef Expression
1 2rp 11307 . . . . . 6  |-  2  e.  RR+
2 relogcl 23390 . . . . . 6  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
31, 2ax-mp 5 . . . . 5  |-  ( log `  2 )  e.  RR
4 1re 9641 . . . . . 6  |-  1  e.  RR
5 2re 10679 . . . . . . 7  |-  2  e.  RR
6 ere 14121 . . . . . . 7  |-  _e  e.  RR
75, 6remulcli 9656 . . . . . 6  |-  ( 2  x.  _e )  e.  RR
8 2pos 10701 . . . . . . . 8  |-  0  <  2
9 epos 14237 . . . . . . . 8  |-  0  <  _e
105, 6, 8, 9mulgt0ii 9767 . . . . . . 7  |-  0  <  ( 2  x.  _e )
117, 10gt0ne0ii 10149 . . . . . 6  |-  ( 2  x.  _e )  =/=  0
124, 7, 11redivcli 10373 . . . . 5  |-  ( 1  /  ( 2  x.  _e ) )  e.  RR
133, 12resubcli 9935 . . . 4  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  RR
14 2ne0 10702 . . . 4  |-  2  =/=  0
1513, 5, 14redivcli 10373 . . 3  |-  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 )  e.  RR
1615a1i 11 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  e.  RR )
175a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  RR )
18 8re 10694 . . . . . . . 8  |-  8  e.  RR
1918a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  e.  RR )
20 simpl 458 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR )
21 2lt8 10802 . . . . . . . . 9  |-  2  <  8
225, 18, 21ltleii 9756 . . . . . . . 8  |-  2  <_  8
2322a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  8 )
24 simpr 462 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  <_  N )
2517, 19, 20, 23, 24letrd 9791 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  N )
26 ppinncl 23964 . . . . . 6  |-  ( ( N  e.  RR  /\  2  <_  N )  -> 
(π `  N )  e.  NN )
2725, 26syldan 472 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  NN )
2827nnred 10624 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  RR )
29 chebbnd1lem2.1 . . . . . . . . . 10  |-  M  =  ( |_ `  ( N  /  2 ) )
30 rehalfcl 10839 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  RR )
3130adantr 466 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  e.  RR )
3231flcld 12031 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( |_ `  ( N  /  2 ) )  e.  ZZ )
3329, 32syl5eqel 2521 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ZZ )
3433zred 11040 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR )
35 remulcl 9623 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  M  e.  RR )  ->  ( 2  x.  M
)  e.  RR )
365, 34, 35sylancr 667 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR )
374a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  e.  RR )
38 1lt2 10776 . . . . . . . . 9  |-  1  <  2
3938a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <  2 )
40 2t1e2 10758 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
41 4nn 10769 . . . . . . . . . . . 12  |-  4  e.  NN
42 4z 10971 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
4342a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  ZZ )
44 4t2e8 10763 . . . . . . . . . . . . . . . . 17  |-  ( 4  x.  2 )  =  8
4544, 24syl5eqbr 4459 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  x.  2 )  <_  N )
46 4re 10686 . . . . . . . . . . . . . . . . . 18  |-  4  e.  RR
4746a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  RR )
488a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  2 )
49 lemuldiv 10485 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 4  x.  2 )  <_  N 
<->  4  <_  ( N  /  2 ) ) )
5047, 20, 17, 48, 49syl112anc 1268 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 4  x.  2 )  <_  N  <->  4  <_  ( N  / 
2 ) ) )
5145, 50mpbid 213 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( N  /  2 ) )
52 flge 12038 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  /  2
)  e.  RR  /\  4  e.  ZZ )  ->  ( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
5331, 42, 52sylancl 666 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
5451, 53mpbid 213 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( |_ `  ( N  /  2
) ) )
5554, 29syl6breqr 4466 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  M )
56 eluz2 11165 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  4
)  <->  ( 4  e.  ZZ  /\  M  e.  ZZ  /\  4  <_  M ) )
5743, 33, 55, 56syl3anbrc 1189 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ( ZZ>= ` 
4 ) )
58 eluznn 11229 . . . . . . . . . . . 12  |-  ( ( 4  e.  NN  /\  M  e.  ( ZZ>= ` 
4 ) )  ->  M  e.  NN )
5941, 57, 58sylancr 667 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  NN )
6059nnge1d 10652 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <_  M )
61 lemul2 10457 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  M 
<->  ( 2  x.  1 )  <_  ( 2  x.  M ) ) )
6237, 34, 17, 48, 61syl112anc 1268 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  <_  M  <->  ( 2  x.  1 )  <_  ( 2  x.  M ) ) )
6360, 62mpbid 213 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  1 )  <_  ( 2  x.  M ) )
6440, 63syl5eqbrr 4460 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  ( 2  x.  M ) )
6537, 17, 36, 39, 64ltletrd 9794 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <  ( 2  x.  M ) )
6636, 65rplogcld 23443 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  RR+ )
6766rpred 11341 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  RR )
68 2nn 10767 . . . . . 6  |-  2  e.  NN
69 nnmulcl 10632 . . . . . 6  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
7068, 59, 69sylancr 667 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  NN )
7167, 70nndivred 10658 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR )
7228, 71remulcld 9670 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR )
73 rehalfcl 10839 . . 3  |-  ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  ->  ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  e.  RR )
7472, 73syl 17 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  e.  RR )
75 0red 9643 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  e.  RR )
76 8pos 10710 . . . . . . . 8  |-  0  <  8
7776a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  8 )
7875, 19, 20, 77, 24ltletrd 9794 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  N )
7920, 78elrpd 11338 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR+ )
8079relogcld 23437 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  N
)  e.  RR )
8180, 79rerpdivcld 11369 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  N )  e.  RR )
8228, 81remulcld 9670 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  N
)  /  N ) )  e.  RR )
8313a1i 11 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR )
84 ppinncl 23964 . . . . . . 7  |-  ( ( ( 2  x.  M
)  e.  RR  /\  2  <_  ( 2  x.  M ) )  -> 
(π `  ( 2  x.  M ) )  e.  NN )
8536, 64, 84syl2anc 665 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  NN )
8685nnred 10624 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  RR )
8786, 71remulcld 9670 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR )
88 remulcl 9623 . . . . . . . 8  |-  ( ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR  /\  (
2  x.  M )  e.  RR )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  e.  RR )
8913, 36, 88sylancr 667 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  e.  RR )
90 4pos 10705 . . . . . . . . . . 11  |-  0  <  4
9146, 90elrpii 11305 . . . . . . . . . 10  |-  4  e.  RR+
92 rpexpcl 12288 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  M  e.  ZZ )  ->  (
4 ^ M )  e.  RR+ )
9391, 33, 92sylancr 667 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4 ^ M
)  e.  RR+ )
9459nnrpd 11339 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR+ )
9593, 94rpdivcld 11358 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 4 ^ M )  /  M
)  e.  RR+ )
9695relogcld 23437 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  e.  RR )
9786, 67remulcld 9670 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  e.  RR )
9894relogcld 23437 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  M
)  e.  RR )
99 epr 14238 . . . . . . . . . 10  |-  _e  e.  RR+
100 rerpdivcl 11330 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  _e  e.  RR+ )  ->  ( M  /  _e )  e.  RR )
10134, 99, 100sylancl 666 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  /  _e )  e.  RR )
10293relogcld 23437 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
4 ^ M ) )  e.  RR )
1036a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  e.  RR )
104 egt2lt3 14236 . . . . . . . . . . . . . . . . . 18  |-  ( 2  <  _e  /\  _e  <  3 )
105104simpri 463 . . . . . . . . . . . . . . . . 17  |-  _e  <  3
106 3lt4 10779 . . . . . . . . . . . . . . . . 17  |-  3  <  4
107 3re 10683 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
1086, 107, 46lttri 9759 . . . . . . . . . . . . . . . . 17  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
109105, 106, 108mp2an 676 . . . . . . . . . . . . . . . 16  |-  _e  <  4
110109a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  4 )
111103, 47, 34, 110, 55ltletrd 9794 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  M )
112103, 34, 111ltled 9782 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <_  M )
1136leidi 10147 . . . . . . . . . . . . . . . 16  |-  _e  <_  _e
114 logdivlt 23435 . . . . . . . . . . . . . . . 16  |-  ( ( ( _e  e.  RR  /\  _e  <_  _e )  /\  ( M  e.  RR  /\  _e  <_  M )
)  ->  ( _e  <  M  <->  ( ( log `  M )  /  M
)  <  ( ( log `  _e )  /  _e ) ) )
1156, 113, 114mpanl12 686 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  _e  <_  M )  -> 
( _e  <  M  <->  ( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) ) )
11634, 112, 115syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( _e  <  M  <->  ( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) ) )
117111, 116mpbid 213 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) )
118 loge 23401 . . . . . . . . . . . . . 14  |-  ( log `  _e )  =  1
119118oveq1i 6315 . . . . . . . . . . . . 13  |-  ( ( log `  _e )  /  _e )  =  ( 1  /  _e )
120117, 119syl6breq 4465 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  /  M )  <  ( 1  /  _e ) )
1216, 9pm3.2i 456 . . . . . . . . . . . . . 14  |-  ( _e  e.  RR  /\  0  <  _e )
122121a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( _e  e.  RR  /\  0  <  _e ) )
12359nngt0d 10653 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  M )
12434, 123jca 534 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  e.  RR  /\  0  <  M ) )
125 lt2mul2div 10482 . . . . . . . . . . . . 13  |-  ( ( ( ( log `  M
)  e.  RR  /\  ( _e  e.  RR  /\  0  <  _e ) )  /\  ( 1  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) ) )  ->  ( ( ( log `  M )  x.  _e )  < 
( 1  x.  M
)  <->  ( ( log `  M )  /  M
)  <  ( 1  /  _e ) ) )
12698, 122, 37, 124, 125syl22anc 1265 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  M )  x.  _e )  <  ( 1  x.  M )  <->  ( ( log `  M )  /  M )  <  (
1  /  _e ) ) )
127120, 126mpbird 235 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  x.  _e )  <  ( 1  x.  M ) )
12834recnd 9668 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  CC )
129128mulid2d 9660 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  x.  M
)  =  M )
130127, 129breqtrd 4450 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  x.  _e )  <  M )
131 ltmuldiv 10477 . . . . . . . . . . 11  |-  ( ( ( log `  M
)  e.  RR  /\  M  e.  RR  /\  (
_e  e.  RR  /\  0  <  _e ) )  ->  ( ( ( log `  M )  x.  _e )  < 
M  <->  ( log `  M
)  <  ( M  /  _e ) ) )
13298, 34, 122, 131syl3anc 1264 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  M )  x.  _e )  <  M  <->  ( log `  M )  <  ( M  /  _e ) ) )
133130, 132mpbid 213 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  M
)  <  ( M  /  _e ) )
13498, 101, 102, 133ltsub2dd 10225 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
4 ^ M ) )  -  ( M  /  _e ) )  <  ( ( log `  ( 4 ^ M
) )  -  ( log `  M ) ) )
1353recni 9654 . . . . . . . . . . 11  |-  ( log `  2 )  e.  CC
136135a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  2
)  e.  CC )
13712recni 9654 . . . . . . . . . . 11  |-  ( 1  /  ( 2  x.  _e ) )  e.  CC
138137a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  /  (
2  x.  _e ) )  e.  CC )
13970nnrpd 11339 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR+ )
140139rpcnd 11343 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  CC )
141136, 138, 140subdird 10074 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  =  ( ( ( log `  2
)  x.  ( 2  x.  M ) )  -  ( ( 1  /  ( 2  x.  _e ) )  x.  ( 2  x.  M
) ) ) )
142136, 140mulcomd 9663 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  x.  ( 2  x.  M ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
143 2z 10969 . . . . . . . . . . . . 13  |-  2  e.  ZZ
144 zmulcl 10985 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  M
)  e.  ZZ )
145143, 33, 144sylancr 667 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  ZZ )
146 relogexp 23410 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  (
2  x.  M )  e.  ZZ )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
1471, 145, 146sylancr 667 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
148 2cnd 10682 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  CC )
14959nnnn0d 10925 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  NN0 )
150 2nn0 10886 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
151150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  NN0 )
152148, 149, 151expmuld 12416 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2 ^ (
2  x.  M ) )  =  ( ( 2 ^ 2 ) ^ M ) )
153 sq2 12368 . . . . . . . . . . . . . 14  |-  ( 2 ^ 2 )  =  4
154153oveq1i 6315 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 2 ) ^ M )  =  ( 4 ^ M
)
155152, 154syl6eq 2486 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2 ^ (
2  x.  M ) )  =  ( 4 ^ M ) )
156155fveq2d 5885 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( log `  ( 4 ^ M
) ) )
157142, 147, 1563eqtr2d 2476 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  x.  ( 2  x.  M ) )  =  ( log `  (
4 ^ M ) ) )
1587recni 9654 . . . . . . . . . . . . 13  |-  ( 2  x.  _e )  e.  CC
159158a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  _e )  e.  CC )
16011a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  _e )  =/=  0 )
161140, 159, 160divrec2d 10386 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  /  (
2  x.  _e ) )  =  ( ( 1  /  ( 2  x.  _e ) )  x.  ( 2  x.  M ) ) )
1626recni 9654 . . . . . . . . . . . . 13  |-  _e  e.  CC
163162a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  e.  CC )
1646, 9gt0ne0ii 10149 . . . . . . . . . . . . 13  |-  _e  =/=  0
165164a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  =/=  0 )
16614a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  =/=  0 )
167128, 163, 148, 165, 166divcan5d 10408 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  /  (
2  x.  _e ) )  =  ( M  /  _e ) )
168161, 167eqtr3d 2472 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 1  / 
( 2  x.  _e ) )  x.  (
2  x.  M ) )  =  ( M  /  _e ) )
169157, 168oveq12d 6323 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  x.  ( 2  x.  M
) )  -  (
( 1  /  (
2  x.  _e ) )  x.  ( 2  x.  M ) ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( M  /  _e ) ) )
170141, 169eqtrd 2470 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( M  /  _e ) ) )
17193, 94relogdivd 23440 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( log `  M
) ) )
172134, 170, 1713brtr4d 4456 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  <  ( log `  ( ( 4 ^ M )  /  M
) ) )
173 eqid 2429 . . . . . . . . 9  |-  if ( ( 2  x.  M
)  <_  ( (
2  x.  M )  _C  M ) ,  ( 2  x.  M
) ,  ( ( 2  x.  M )  _C  M ) )  =  if ( ( 2  x.  M )  <_  ( ( 2  x.  M )  _C  M ) ,  ( 2  x.  M ) ,  ( ( 2  x.  M )  _C  M ) )
174173chebbnd1lem1 24170 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ M )  /  M
) )  <  (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) ) )
17557, 174syl 17 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  <  ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) ) )
17689, 96, 97, 172, 175lttrd 9795 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  <  ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) ) )
17783, 97, 139ltmuldivd 11385 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  x.  ( 2  x.  M
) )  <  (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  <->  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  <  (
( (π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  /  (
2  x.  M ) ) ) )
178176, 177mpbid 213 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) )  /  ( 2  x.  M ) ) )
17986recnd 9668 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  CC )
18066rpcnd 11343 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  CC )
181139rpcnne0d 11350 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  e.  CC  /\  ( 2  x.  M
)  =/=  0 ) )
182 divass 10287 . . . . . 6  |-  ( ( (π `  ( 2  x.  M ) )  e.  CC  /\  ( log `  ( 2  x.  M
) )  e.  CC  /\  ( ( 2  x.  M )  e.  CC  /\  ( 2  x.  M
)  =/=  0 ) )  ->  ( (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  /  (
2  x.  M ) )  =  ( (π `  ( 2  x.  M
) )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
183179, 180, 181, 182syl3anc 1264 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  (
2  x.  M ) )  x.  ( log `  ( 2  x.  M
) ) )  / 
( 2  x.  M
) )  =  ( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
184178, 183breqtrd 4450 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  (
2  x.  M ) )  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) ) )
185 flle 12032 . . . . . . . . 9  |-  ( ( N  /  2 )  e.  RR  ->  ( |_ `  ( N  / 
2 ) )  <_ 
( N  /  2
) )
18631, 185syl 17 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( |_ `  ( N  /  2 ) )  <_  ( N  / 
2 ) )
18729, 186syl5eqbr 4459 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  <_  ( N  / 
2 ) )
188 lemuldiv2 10486 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  M )  <_  N 
<->  M  <_  ( N  /  2 ) ) )
18934, 20, 17, 48, 188syl112anc 1268 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  <_  N  <->  M  <_  ( N  / 
2 ) ) )
190187, 189mpbird 235 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  <_  N )
191 ppiwordi 23952 . . . . . 6  |-  ( ( ( 2  x.  M
)  e.  RR  /\  N  e.  RR  /\  (
2  x.  M )  <_  N )  -> 
(π `  ( 2  x.  M ) )  <_ 
(π `  N ) )
19236, 20, 190, 191syl3anc 1264 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  <_ 
(π `  N ) )
19366, 139rpdivcld 11358 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR+ )
19486, 28, 193lemul1d 11381 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  <_ 
(π `  N )  <->  ( (π `  ( 2  x.  M
) )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <_  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) ) )
195192, 194mpbid 213 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <_  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
19683, 87, 72, 184, 195ltletrd 9794 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) ) )
197 ltdiv1 10468 . . . 4  |-  ( ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR  /\  (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  <-> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) ) )
19883, 72, 17, 48, 197syl112anc 1268 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  <  (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <->  ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  / 
2 )  <  (
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) ) )
199196, 198mpbid 213 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) )
20029chebbnd1lem2 24171 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) ) )
201 remulcl 9623 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( log `  N
)  /  N )  e.  RR )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
2025, 81, 201sylancr 667 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
20327nngt0d 10653 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  (π `  N
) )
204 ltmul2 10455 . . . . . 6  |-  ( ( ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR  /\  (
2  x.  ( ( log `  N )  /  N ) )  e.  RR  /\  (
(π `  N )  e.  RR  /\  0  < 
(π `  N ) ) )  ->  ( (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) )  <->  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N
)  x.  ( 2  x.  ( ( log `  N )  /  N
) ) ) ) )
20571, 202, 28, 203, 204syl112anc 1268 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  ( 2  x.  M
) )  /  (
2  x.  M ) )  <  ( 2  x.  ( ( log `  N )  /  N
) )  <->  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N )  x.  (
2  x.  ( ( log `  N )  /  N ) ) ) ) )
206200, 205mpbid 213 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N )  x.  (
2  x.  ( ( log `  N )  /  N ) ) ) )
20728recnd 9668 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  CC )
20881recnd 9668 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  N )  e.  CC )
209207, 148, 208mul12d 9841 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( 2  x.  (
( log `  N
)  /  N ) ) )  =  ( 2  x.  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) ) )
210206, 209breqtrd 4450 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) )
211 ltdivmul 10479 . . . 4  |-  ( ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  /\  ( (π `  N )  x.  ( ( log `  N
)  /  N ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  <  ( (π `  N
)  x.  ( ( log `  N )  /  N ) )  <-> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) ) )
21272, 82, 17, 48, 211syl112anc 1268 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  <  ( (π `  N
)  x.  ( ( log `  N )  /  N ) )  <-> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) ) )
213210, 212mpbird 235 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  < 
( (π `  N )  x.  ( ( log `  N
)  /  N ) ) )
21416, 74, 82, 199, 213lttrd 9795 1  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   ifcif 3915   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    x. cmul 9543    < clt 9674    <_ cle 9675    - cmin 9859    / cdiv 10268   NNcn 10609   2c2 10659   3c3 10660   4c4 10661   8c8 10665   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   |_cfl 12023   ^cexp 12269    _C cbc 12484   _eceu 14093   logclog 23369  πcppi 23883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-ef 14099  df-e 14100  df-sin 14101  df-cos 14102  df-pi 14104  df-dvds 14284  df-gcd 14443  df-prm 14594  df-pc 14750  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371  df-ppi 23889
This theorem is referenced by:  chebbnd1  24173
  Copyright terms: Public domain W3C validator