MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem3 Structured version   Unicode version

Theorem chebbnd1lem3 23854
Description: Lemma for chebbnd1 23855: get a lower bound on π ( N )  /  ( N  /  log ( N ) ) that is independent of  N. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1  |-  M  =  ( |_ `  ( N  /  2 ) )
Assertion
Ref Expression
chebbnd1lem3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) )

Proof of Theorem chebbnd1lem3
StepHypRef Expression
1 2rp 11226 . . . . . 6  |-  2  e.  RR+
2 relogcl 23129 . . . . . 6  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
31, 2ax-mp 5 . . . . 5  |-  ( log `  2 )  e.  RR
4 1re 9584 . . . . . 6  |-  1  e.  RR
5 2re 10601 . . . . . . 7  |-  2  e.  RR
6 ere 13906 . . . . . . 7  |-  _e  e.  RR
75, 6remulcli 9599 . . . . . 6  |-  ( 2  x.  _e )  e.  RR
8 2pos 10623 . . . . . . . 8  |-  0  <  2
9 epos 14022 . . . . . . . 8  |-  0  <  _e
105, 6, 8, 9mulgt0ii 9707 . . . . . . 7  |-  0  <  ( 2  x.  _e )
117, 10gt0ne0ii 10085 . . . . . 6  |-  ( 2  x.  _e )  =/=  0
124, 7, 11redivcli 10307 . . . . 5  |-  ( 1  /  ( 2  x.  _e ) )  e.  RR
133, 12resubcli 9872 . . . 4  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  RR
14 2ne0 10624 . . . 4  |-  2  =/=  0
1513, 5, 14redivcli 10307 . . 3  |-  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 )  e.  RR
1615a1i 11 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  e.  RR )
175a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  RR )
18 8re 10616 . . . . . . . 8  |-  8  e.  RR
1918a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  e.  RR )
20 simpl 455 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR )
21 2lt8 10724 . . . . . . . . 9  |-  2  <  8
225, 18, 21ltleii 9696 . . . . . . . 8  |-  2  <_  8
2322a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  8 )
24 simpr 459 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  <_  N )
2517, 19, 20, 23, 24letrd 9728 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  N )
26 ppinncl 23646 . . . . . 6  |-  ( ( N  e.  RR  /\  2  <_  N )  -> 
(π `  N )  e.  NN )
2725, 26syldan 468 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  NN )
2827nnred 10546 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  RR )
29 chebbnd1lem2.1 . . . . . . . . . 10  |-  M  =  ( |_ `  ( N  /  2 ) )
30 rehalfcl 10761 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  RR )
3130adantr 463 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  e.  RR )
3231flcld 11916 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( |_ `  ( N  /  2 ) )  e.  ZZ )
3329, 32syl5eqel 2546 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ZZ )
3433zred 10965 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR )
35 remulcl 9566 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  M  e.  RR )  ->  ( 2  x.  M
)  e.  RR )
365, 34, 35sylancr 661 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR )
374a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  e.  RR )
38 1lt2 10698 . . . . . . . . 9  |-  1  <  2
3938a1i 11 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <  2 )
40 2t1e2 10680 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
41 4nn 10691 . . . . . . . . . . . 12  |-  4  e.  NN
42 4z 10894 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
4342a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  ZZ )
44 4t2e8 10685 . . . . . . . . . . . . . . . . 17  |-  ( 4  x.  2 )  =  8
4544, 24syl5eqbr 4472 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  x.  2 )  <_  N )
46 4re 10608 . . . . . . . . . . . . . . . . . 18  |-  4  e.  RR
4746a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  RR )
488a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  2 )
49 lemuldiv 10419 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 4  x.  2 )  <_  N 
<->  4  <_  ( N  /  2 ) ) )
5047, 20, 17, 48, 49syl112anc 1230 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 4  x.  2 )  <_  N  <->  4  <_  ( N  / 
2 ) ) )
5145, 50mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( N  /  2 ) )
52 flge 11923 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  /  2
)  e.  RR  /\  4  e.  ZZ )  ->  ( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
5331, 42, 52sylancl 660 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
5451, 53mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( |_ `  ( N  /  2
) ) )
5554, 29syl6breqr 4479 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  M )
56 eluz2 11088 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  4
)  <->  ( 4  e.  ZZ  /\  M  e.  ZZ  /\  4  <_  M ) )
5743, 33, 55, 56syl3anbrc 1178 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ( ZZ>= ` 
4 ) )
58 eluznn 11153 . . . . . . . . . . . 12  |-  ( ( 4  e.  NN  /\  M  e.  ( ZZ>= ` 
4 ) )  ->  M  e.  NN )
5941, 57, 58sylancr 661 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  NN )
6059nnge1d 10574 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <_  M )
61 lemul2 10391 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 1  <_  M 
<->  ( 2  x.  1 )  <_  ( 2  x.  M ) ) )
6237, 34, 17, 48, 61syl112anc 1230 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  <_  M  <->  ( 2  x.  1 )  <_  ( 2  x.  M ) ) )
6360, 62mpbid 210 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  1 )  <_  ( 2  x.  M ) )
6440, 63syl5eqbrr 4473 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  <_  ( 2  x.  M ) )
6537, 17, 36, 39, 64ltletrd 9731 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <  ( 2  x.  M ) )
6636, 65rplogcld 23182 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  RR+ )
6766rpred 11259 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  RR )
68 2nn 10689 . . . . . 6  |-  2  e.  NN
69 nnmulcl 10554 . . . . . 6  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
7068, 59, 69sylancr 661 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  NN )
7167, 70nndivred 10580 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR )
7228, 71remulcld 9613 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR )
73 rehalfcl 10761 . . 3  |-  ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  ->  ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  e.  RR )
7472, 73syl 16 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  e.  RR )
75 0red 9586 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  e.  RR )
76 8pos 10632 . . . . . . . 8  |-  0  <  8
7776a1i 11 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  8 )
7875, 19, 20, 77, 24ltletrd 9731 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  N )
7920, 78elrpd 11256 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR+ )
8079relogcld 23176 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  N
)  e.  RR )
8180, 79rerpdivcld 11286 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  N )  e.  RR )
8228, 81remulcld 9613 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  N
)  /  N ) )  e.  RR )
8313a1i 11 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR )
84 ppinncl 23646 . . . . . . 7  |-  ( ( ( 2  x.  M
)  e.  RR  /\  2  <_  ( 2  x.  M ) )  -> 
(π `  ( 2  x.  M ) )  e.  NN )
8536, 64, 84syl2anc 659 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  NN )
8685nnred 10546 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  RR )
8786, 71remulcld 9613 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR )
88 remulcl 9566 . . . . . . . 8  |-  ( ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR  /\  (
2  x.  M )  e.  RR )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  e.  RR )
8913, 36, 88sylancr 661 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  e.  RR )
90 4pos 10627 . . . . . . . . . . 11  |-  0  <  4
9146, 90elrpii 11224 . . . . . . . . . 10  |-  4  e.  RR+
92 rpexpcl 12167 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  M  e.  ZZ )  ->  (
4 ^ M )  e.  RR+ )
9391, 33, 92sylancr 661 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4 ^ M
)  e.  RR+ )
9459nnrpd 11257 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR+ )
9593, 94rpdivcld 11276 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 4 ^ M )  /  M
)  e.  RR+ )
9695relogcld 23176 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  e.  RR )
9786, 67remulcld 9613 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  e.  RR )
9894relogcld 23176 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  M
)  e.  RR )
99 epr 14023 . . . . . . . . . 10  |-  _e  e.  RR+
100 rerpdivcl 11249 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  _e  e.  RR+ )  ->  ( M  /  _e )  e.  RR )
10134, 99, 100sylancl 660 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  /  _e )  e.  RR )
10293relogcld 23176 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
4 ^ M ) )  e.  RR )
1036a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  e.  RR )
104 egt2lt3 14021 . . . . . . . . . . . . . . . . . 18  |-  ( 2  <  _e  /\  _e  <  3 )
105104simpri 460 . . . . . . . . . . . . . . . . 17  |-  _e  <  3
106 3lt4 10701 . . . . . . . . . . . . . . . . 17  |-  3  <  4
107 3re 10605 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
1086, 107, 46lttri 9699 . . . . . . . . . . . . . . . . 17  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
109105, 106, 108mp2an 670 . . . . . . . . . . . . . . . 16  |-  _e  <  4
110109a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  4 )
111103, 47, 34, 110, 55ltletrd 9731 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  M )
112103, 34, 111ltled 9722 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <_  M )
1136leidi 10083 . . . . . . . . . . . . . . . 16  |-  _e  <_  _e
114 logdivlt 23174 . . . . . . . . . . . . . . . 16  |-  ( ( ( _e  e.  RR  /\  _e  <_  _e )  /\  ( M  e.  RR  /\  _e  <_  M )
)  ->  ( _e  <  M  <->  ( ( log `  M )  /  M
)  <  ( ( log `  _e )  /  _e ) ) )
1156, 113, 114mpanl12 680 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  _e  <_  M )  -> 
( _e  <  M  <->  ( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) ) )
11634, 112, 115syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( _e  <  M  <->  ( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) ) )
117111, 116mpbid 210 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  /  M )  <  ( ( log `  _e )  /  _e ) )
118 loge 23140 . . . . . . . . . . . . . 14  |-  ( log `  _e )  =  1
119118oveq1i 6280 . . . . . . . . . . . . 13  |-  ( ( log `  _e )  /  _e )  =  ( 1  /  _e )
120117, 119syl6breq 4478 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  /  M )  <  ( 1  /  _e ) )
1216, 9pm3.2i 453 . . . . . . . . . . . . . 14  |-  ( _e  e.  RR  /\  0  <  _e )
122121a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( _e  e.  RR  /\  0  <  _e ) )
12359nngt0d 10575 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  M )
12434, 123jca 530 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  e.  RR  /\  0  <  M ) )
125 lt2mul2div 10416 . . . . . . . . . . . . 13  |-  ( ( ( ( log `  M
)  e.  RR  /\  ( _e  e.  RR  /\  0  <  _e ) )  /\  ( 1  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) ) )  ->  ( ( ( log `  M )  x.  _e )  < 
( 1  x.  M
)  <->  ( ( log `  M )  /  M
)  <  ( 1  /  _e ) ) )
12698, 122, 37, 124, 125syl22anc 1227 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  M )  x.  _e )  <  ( 1  x.  M )  <->  ( ( log `  M )  /  M )  <  (
1  /  _e ) ) )
127120, 126mpbird 232 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  x.  _e )  <  ( 1  x.  M ) )
12834recnd 9611 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  CC )
129128mulid2d 9603 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  x.  M
)  =  M )
130127, 129breqtrd 4463 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  M
)  x.  _e )  <  M )
131 ltmuldiv 10411 . . . . . . . . . . 11  |-  ( ( ( log `  M
)  e.  RR  /\  M  e.  RR  /\  (
_e  e.  RR  /\  0  <  _e ) )  ->  ( ( ( log `  M )  x.  _e )  < 
M  <->  ( log `  M
)  <  ( M  /  _e ) ) )
13298, 34, 122, 131syl3anc 1226 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  M )  x.  _e )  <  M  <->  ( log `  M )  <  ( M  /  _e ) ) )
133130, 132mpbid 210 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  M
)  <  ( M  /  _e ) )
13498, 101, 102, 133ltsub2dd 10161 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
4 ^ M ) )  -  ( M  /  _e ) )  <  ( ( log `  ( 4 ^ M
) )  -  ( log `  M ) ) )
1353recni 9597 . . . . . . . . . . 11  |-  ( log `  2 )  e.  CC
136135a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  2
)  e.  CC )
13712recni 9597 . . . . . . . . . . 11  |-  ( 1  /  ( 2  x.  _e ) )  e.  CC
138137a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 1  /  (
2  x.  _e ) )  e.  CC )
13970nnrpd 11257 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR+ )
140139rpcnd 11261 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  CC )
141136, 138, 140subdird 10009 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  =  ( ( ( log `  2
)  x.  ( 2  x.  M ) )  -  ( ( 1  /  ( 2  x.  _e ) )  x.  ( 2  x.  M
) ) ) )
142136, 140mulcomd 9606 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  x.  ( 2  x.  M ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
143 2z 10892 . . . . . . . . . . . . 13  |-  2  e.  ZZ
144 zmulcl 10908 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  x.  M
)  e.  ZZ )
145143, 33, 144sylancr 661 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  ZZ )
146 relogexp 23149 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  (
2  x.  M )  e.  ZZ )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
1471, 145, 146sylancr 661 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( ( 2  x.  M )  x.  ( log `  2
) ) )
148 2cnd 10604 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  CC )
14959nnnn0d 10848 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  NN0 )
150 2nn0 10808 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
151150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  NN0 )
152148, 149, 151expmuld 12295 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2 ^ (
2  x.  M ) )  =  ( ( 2 ^ 2 ) ^ M ) )
153 sq2 12246 . . . . . . . . . . . . . 14  |-  ( 2 ^ 2 )  =  4
154153oveq1i 6280 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 2 ) ^ M )  =  ( 4 ^ M
)
155152, 154syl6eq 2511 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2 ^ (
2  x.  M ) )  =  ( 4 ^ M ) )
156155fveq2d 5852 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2 ^ ( 2  x.  M ) ) )  =  ( log `  ( 4 ^ M
) ) )
157142, 147, 1563eqtr2d 2501 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  x.  ( 2  x.  M ) )  =  ( log `  (
4 ^ M ) ) )
1587recni 9597 . . . . . . . . . . . . 13  |-  ( 2  x.  _e )  e.  CC
159158a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  _e )  e.  CC )
16011a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  _e )  =/=  0 )
161140, 159, 160divrec2d 10320 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  /  (
2  x.  _e ) )  =  ( ( 1  /  ( 2  x.  _e ) )  x.  ( 2  x.  M ) ) )
1626recni 9597 . . . . . . . . . . . . 13  |-  _e  e.  CC
163162a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  e.  CC )
1646, 9gt0ne0ii 10085 . . . . . . . . . . . . 13  |-  _e  =/=  0
165164a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  =/=  0 )
16614a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  =/=  0 )
167128, 163, 148, 165, 166divcan5d 10342 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  /  (
2  x.  _e ) )  =  ( M  /  _e ) )
168161, 167eqtr3d 2497 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 1  / 
( 2  x.  _e ) )  x.  (
2  x.  M ) )  =  ( M  /  _e ) )
169157, 168oveq12d 6288 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  x.  ( 2  x.  M
) )  -  (
( 1  /  (
2  x.  _e ) )  x.  ( 2  x.  M ) ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( M  /  _e ) ) )
170141, 169eqtrd 2495 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( M  /  _e ) ) )
17193, 94relogdivd 23179 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  =  ( ( log `  ( 4 ^ M ) )  -  ( log `  M
) ) )
172134, 170, 1713brtr4d 4469 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  <  ( log `  ( ( 4 ^ M )  /  M
) ) )
173 eqid 2454 . . . . . . . . 9  |-  if ( ( 2  x.  M
)  <_  ( (
2  x.  M )  _C  M ) ,  ( 2  x.  M
) ,  ( ( 2  x.  M )  _C  M ) )  =  if ( ( 2  x.  M )  <_  ( ( 2  x.  M )  _C  M ) ,  ( 2  x.  M ) ,  ( ( 2  x.  M )  _C  M ) )
174173chebbnd1lem1 23852 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  4
)  ->  ( log `  ( ( 4 ^ M )  /  M
) )  <  (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) ) )
17557, 174syl 16 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
( 4 ^ M
)  /  M ) )  <  ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) ) )
17689, 96, 97, 172, 175lttrd 9732 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  x.  (
2  x.  M ) )  <  ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) ) )
17783, 97, 139ltmuldivd 11302 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  x.  ( 2  x.  M
) )  <  (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  <->  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  <  (
( (π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  /  (
2  x.  M ) ) ) )
178176, 177mpbid 210 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( ( (π `  ( 2  x.  M
) )  x.  ( log `  ( 2  x.  M ) ) )  /  ( 2  x.  M ) ) )
17986recnd 9611 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  e.  CC )
18066rpcnd 11261 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  CC )
181139rpcnne0d 11268 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  e.  CC  /\  ( 2  x.  M
)  =/=  0 ) )
182 divass 10221 . . . . . 6  |-  ( ( (π `  ( 2  x.  M ) )  e.  CC  /\  ( log `  ( 2  x.  M
) )  e.  CC  /\  ( ( 2  x.  M )  e.  CC  /\  ( 2  x.  M
)  =/=  0 ) )  ->  ( (
(π `  ( 2  x.  M ) )  x.  ( log `  (
2  x.  M ) ) )  /  (
2  x.  M ) )  =  ( (π `  ( 2  x.  M
) )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
183179, 180, 181, 182syl3anc 1226 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  (
2  x.  M ) )  x.  ( log `  ( 2  x.  M
) ) )  / 
( 2  x.  M
) )  =  ( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
184178, 183breqtrd 4463 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  (
2  x.  M ) )  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) ) )
185 flle 11917 . . . . . . . . 9  |-  ( ( N  /  2 )  e.  RR  ->  ( |_ `  ( N  / 
2 ) )  <_ 
( N  /  2
) )
18631, 185syl 16 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( |_ `  ( N  /  2 ) )  <_  ( N  / 
2 ) )
18729, 186syl5eqbr 4472 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  <_  ( N  / 
2 ) )
188 lemuldiv2 10420 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 2  x.  M )  <_  N 
<->  M  <_  ( N  /  2 ) ) )
18934, 20, 17, 48, 188syl112anc 1230 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  M )  <_  N  <->  M  <_  ( N  / 
2 ) ) )
190187, 189mpbird 232 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  <_  N )
191 ppiwordi 23634 . . . . . 6  |-  ( ( ( 2  x.  M
)  e.  RR  /\  N  e.  RR  /\  (
2  x.  M )  <_  N )  -> 
(π `  ( 2  x.  M ) )  <_ 
(π `  N ) )
19236, 20, 190, 191syl3anc 1226 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  ( 2  x.  M ) )  <_ 
(π `  N ) )
19366, 139rpdivcld 11276 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR+ )
19486, 28, 193lemul1d 11298 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  <_ 
(π `  N )  <->  ( (π `  ( 2  x.  M
) )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <_  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) ) )
195192, 194mpbid 210 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  ( 2  x.  M ) )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <_  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) ) )
19683, 87, 72, 184, 195ltletrd 9731 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) ) )
197 ltdiv1 10402 . . . 4  |-  ( ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR  /\  (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  <  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  <-> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) ) )
19883, 72, 17, 48, 197syl112anc 1230 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  <  (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <->  ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  / 
2 )  <  (
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) ) )
199196, 198mpbid 210 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (
(π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 ) )
20029chebbnd1lem2 23853 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) ) )
201 remulcl 9566 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( ( log `  N
)  /  N )  e.  RR )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
2025, 81, 201sylancr 661 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
20327nngt0d 10575 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  (π `  N
) )
204 ltmul2 10389 . . . . . 6  |-  ( ( ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR  /\  (
2  x.  ( ( log `  N )  /  N ) )  e.  RR  /\  (
(π `  N )  e.  RR  /\  0  < 
(π `  N ) ) )  ->  ( (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) )  <->  ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N
)  x.  ( 2  x.  ( ( log `  N )  /  N
) ) ) ) )
20571, 202, 28, 203, 204syl112anc 1230 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  ( 2  x.  M
) )  /  (
2  x.  M ) )  <  ( 2  x.  ( ( log `  N )  /  N
) )  <->  ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N )  x.  (
2  x.  ( ( log `  N )  /  N ) ) ) ) )
206200, 205mpbid 210 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( (π `  N )  x.  (
2  x.  ( ( log `  N )  /  N ) ) ) )
20728recnd 9611 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
(π `  N )  e.  CC )
20881recnd 9611 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  N )  e.  CC )
209207, 148, 208mul12d 9778 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( 2  x.  (
( log `  N
)  /  N ) ) )  =  ( 2  x.  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) ) )
210206, 209breqtrd 4463 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) )
211 ltdivmul 10413 . . . 4  |-  ( ( ( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  e.  RR  /\  ( (π `  N )  x.  ( ( log `  N
)  /  N ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  <  ( (π `  N
)  x.  ( ( log `  N )  /  N ) )  <-> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) ) )
21272, 82, 17, 48, 211syl112anc 1230 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( (π `  N )  x.  (
( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  <  ( (π `  N
)  x.  ( ( log `  N )  /  N ) )  <-> 
( (π `  N )  x.  ( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) ) )  <  ( 2  x.  ( (π `  N
)  x.  ( ( log `  N )  /  N ) ) ) ) )
213210, 212mpbird 232 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( (π `  N
)  x.  ( ( log `  ( 2  x.  M ) )  /  ( 2  x.  M ) ) )  /  2 )  < 
( (π `  N )  x.  ( ( log `  N
)  /  N ) ) )
21416, 74, 82, 199, 213lttrd 9732 1  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  N )  x.  (
( log `  N
)  /  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   ifcif 3929   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   NNcn 10531   2c2 10581   3c3 10582   4c4 10583   8c8 10587   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   RR+crp 11221   |_cfl 11908   ^cexp 12148    _C cbc 12362   _eceu 13880   logclog 23108  πcppi 23565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12982  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-limsup 13376  df-clim 13393  df-rlim 13394  df-sum 13591  df-ef 13885  df-e 13886  df-sin 13887  df-cos 13888  df-pi 13890  df-dvds 14071  df-gcd 14229  df-prm 14302  df-pc 14445  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lp 19804  df-perf 19805  df-cn 19895  df-cnp 19896  df-haus 19983  df-tx 20229  df-hmeo 20422  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-limc 22436  df-dv 22437  df-log 23110  df-ppi 23571
This theorem is referenced by:  chebbnd1  23855
  Copyright terms: Public domain W3C validator