MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1 Structured version   Visualization version   Unicode version

Theorem chebbnd1 24359
Description: The Chebyshev bound: The function π ( x ) is eventually lower bounded by a positive constant times  x  /  log ( x ). Alternatively stated, the function  ( x  /  log ( x ) )  / π ( x ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd1  |-  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  e.  O(1)

Proof of Theorem chebbnd1
StepHypRef Expression
1 2re 10707 . . . . 5  |-  2  e.  RR
2 pnfxr 11441 . . . . 5  |- +oo  e.  RR*
3 icossre 11744 . . . . 5  |-  ( ( 2  e.  RR  /\ +oo  e.  RR* )  ->  (
2 [,) +oo )  C_  RR )
41, 2, 3mp2an 683 . . . 4  |-  ( 2 [,) +oo )  C_  RR
54a1i 11 . . 3  |-  ( T. 
->  ( 2 [,) +oo )  C_  RR )
6 elicopnf 11759 . . . . . . . . . 10  |-  ( 2  e.  RR  ->  (
x  e.  ( 2 [,) +oo )  <->  ( x  e.  RR  /\  2  <_  x ) ) )
71, 6ax-mp 5 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) +oo )  <->  ( x  e.  RR  /\  2  <_  x ) )
87simplbi 466 . . . . . . . 8  |-  ( x  e.  ( 2 [,) +oo )  ->  x  e.  RR )
9 0red 9670 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) +oo )  ->  0  e.  RR )
10 1re 9668 . . . . . . . . . 10  |-  1  e.  RR
1110a1i 11 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) +oo )  ->  1  e.  RR )
12 0lt1 10164 . . . . . . . . . 10  |-  0  <  1
1312a1i 11 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) +oo )  ->  0  <  1 )
141a1i 11 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) +oo )  ->  2  e.  RR )
15 1lt2 10805 . . . . . . . . . . 11  |-  1  <  2
1615a1i 11 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) +oo )  ->  1  <  2 )
177simprbi 470 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) +oo )  ->  2  <_  x )
1811, 14, 8, 16, 17ltletrd 9821 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) +oo )  ->  1  < 
x )
199, 11, 8, 13, 18lttrd 9822 . . . . . . . 8  |-  ( x  e.  ( 2 [,) +oo )  ->  0  < 
x )
208, 19elrpd 11367 . . . . . . 7  |-  ( x  e.  ( 2 [,) +oo )  ->  x  e.  RR+ )
218, 18rplogcld 23627 . . . . . . 7  |-  ( x  e.  ( 2 [,) +oo )  ->  ( log `  x )  e.  RR+ )
2220, 21rpdivcld 11387 . . . . . 6  |-  ( x  e.  ( 2 [,) +oo )  ->  ( x  /  ( log `  x
) )  e.  RR+ )
23 ppinncl 24150 . . . . . . . 8  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
(π `  x )  e.  NN )
247, 23sylbi 200 . . . . . . 7  |-  ( x  e.  ( 2 [,) +oo )  ->  (π `  x
)  e.  NN )
2524nnrpd 11368 . . . . . 6  |-  ( x  e.  ( 2 [,) +oo )  ->  (π `  x
)  e.  RR+ )
2622, 25rpdivcld 11387 . . . . 5  |-  ( x  e.  ( 2 [,) +oo )  ->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  e.  RR+ )
2726rpcnd 11372 . . . 4  |-  ( x  e.  ( 2 [,) +oo )  ->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  e.  CC )
2827adantl 472 . . 3  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( x  /  ( log `  x ) )  /  (π `  x ) )  e.  CC )
29 8re 10722 . . . 4  |-  8  e.  RR
3029a1i 11 . . 3  |-  ( T. 
->  8  e.  RR )
31 2rp 11336 . . . . . . . 8  |-  2  e.  RR+
32 relogcl 23574 . . . . . . . 8  |-  ( 2  e.  RR+  ->  ( log `  2 )  e.  RR )
3331, 32ax-mp 5 . . . . . . 7  |-  ( log `  2 )  e.  RR
34 ere 14192 . . . . . . . . 9  |-  _e  e.  RR
351, 34remulcli 9683 . . . . . . . 8  |-  ( 2  x.  _e )  e.  RR
36 2pos 10729 . . . . . . . . . 10  |-  0  <  2
37 epos 14308 . . . . . . . . . 10  |-  0  <  _e
381, 34, 36, 37mulgt0ii 9794 . . . . . . . . 9  |-  0  <  ( 2  x.  _e )
3935, 38gt0ne0ii 10178 . . . . . . . 8  |-  ( 2  x.  _e )  =/=  0
4035, 39rereccli 10400 . . . . . . 7  |-  ( 1  /  ( 2  x.  _e ) )  e.  RR
4133, 40resubcli 9962 . . . . . 6  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  RR
42 2t1e2 10787 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
43 egt2lt3 14307 . . . . . . . . . . . . 13  |-  ( 2  <  _e  /\  _e  <  3 )
4443simpli 464 . . . . . . . . . . . 12  |-  2  <  _e
4510, 1, 34lttri 9786 . . . . . . . . . . . 12  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
4615, 44, 45mp2an 683 . . . . . . . . . . 11  |-  1  <  _e
4710, 34, 1ltmul2i 10556 . . . . . . . . . . . 12  |-  ( 0  <  2  ->  (
1  <  _e  <->  ( 2  x.  1 )  < 
( 2  x.  _e ) ) )
4836, 47ax-mp 5 . . . . . . . . . . 11  |-  ( 1  <  _e  <->  ( 2  x.  1 )  < 
( 2  x.  _e ) )
4946, 48mpbi 213 . . . . . . . . . 10  |-  ( 2  x.  1 )  < 
( 2  x.  _e )
5042, 49eqbrtrri 4438 . . . . . . . . 9  |-  2  <  ( 2  x.  _e )
511, 35, 36, 38ltrecii 10551 . . . . . . . . 9  |-  ( 2  <  ( 2  x.  _e )  <->  ( 1  /  ( 2  x.  _e ) )  < 
( 1  /  2
) )
5250, 51mpbi 213 . . . . . . . 8  |-  ( 1  /  ( 2  x.  _e ) )  < 
( 1  /  2
)
5343simpri 468 . . . . . . . . . . . 12  |-  _e  <  3
54 3lt4 10808 . . . . . . . . . . . 12  |-  3  <  4
55 3re 10711 . . . . . . . . . . . . 13  |-  3  e.  RR
56 4re 10714 . . . . . . . . . . . . 13  |-  4  e.  RR
5734, 55, 56lttri 9786 . . . . . . . . . . . 12  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
5853, 54, 57mp2an 683 . . . . . . . . . . 11  |-  _e  <  4
59 epr 14309 . . . . . . . . . . . 12  |-  _e  e.  RR+
60 4pos 10733 . . . . . . . . . . . . 13  |-  0  <  4
6156, 60elrpii 11334 . . . . . . . . . . . 12  |-  4  e.  RR+
62 logltb 23598 . . . . . . . . . . . 12  |-  ( ( _e  e.  RR+  /\  4  e.  RR+ )  ->  (
_e  <  4  <->  ( log `  _e )  <  ( log `  4 ) ) )
6359, 61, 62mp2an 683 . . . . . . . . . . 11  |-  ( _e 
<  4  <->  ( log `  _e )  <  ( log `  4 ) )
6458, 63mpbi 213 . . . . . . . . . 10  |-  ( log `  _e )  <  ( log `  4 )
65 loge 23585 . . . . . . . . . 10  |-  ( log `  _e )  =  1
66 sq2 12403 . . . . . . . . . . . 12  |-  ( 2 ^ 2 )  =  4
6766fveq2i 5891 . . . . . . . . . . 11  |-  ( log `  ( 2 ^ 2 ) )  =  ( log `  4 )
68 2z 10998 . . . . . . . . . . . 12  |-  2  e.  ZZ
69 relogexp 23594 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) ) )
7031, 68, 69mp2an 683 . . . . . . . . . . 11  |-  ( log `  ( 2 ^ 2 ) )  =  ( 2  x.  ( log `  2 ) )
7167, 70eqtr3i 2486 . . . . . . . . . 10  |-  ( log `  4 )  =  ( 2  x.  ( log `  2 ) )
7264, 65, 713brtr3i 4444 . . . . . . . . 9  |-  1  <  ( 2  x.  ( log `  2 ) )
731, 36pm3.2i 461 . . . . . . . . . 10  |-  ( 2  e.  RR  /\  0  <  2 )
74 ltdivmul 10508 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( log `  2 )  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 1  /  2 )  < 
( log `  2
)  <->  1  <  (
2  x.  ( log `  2 ) ) ) )
7510, 33, 73, 74mp3an 1373 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  ( log `  2
)  <->  1  <  (
2  x.  ( log `  2 ) ) )
7672, 75mpbir 214 . . . . . . . 8  |-  ( 1  /  2 )  < 
( log `  2
)
77 halfre 10857 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
7840, 77, 33lttri 9786 . . . . . . . 8  |-  ( ( ( 1  /  (
2  x.  _e ) )  <  ( 1  /  2 )  /\  ( 1  /  2
)  <  ( log `  2 ) )  -> 
( 1  /  (
2  x.  _e ) )  <  ( log `  2 ) )
7952, 76, 78mp2an 683 . . . . . . 7  |-  ( 1  /  ( 2  x.  _e ) )  < 
( log `  2
)
8040, 33posdifi 10192 . . . . . . 7  |-  ( ( 1  /  ( 2  x.  _e ) )  <  ( log `  2
)  <->  0  <  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )
8179, 80mpbi 213 . . . . . 6  |-  0  <  ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )
8241, 81elrpii 11334 . . . . 5  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  RR+
83 rerpdivcl 11359 . . . . 5  |-  ( ( 2  e.  RR  /\  ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  e.  RR+ )  ->  (
2  /  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) ) )  e.  RR )
841, 82, 83mp2an 683 . . . 4  |-  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) )  e.  RR
8584a1i 11 . . 3  |-  ( T. 
->  ( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  e.  RR )
86 rpre 11337 . . . . . . . 8  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  e.  RR )
87 rpge0 11343 . . . . . . . 8  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  0  <_ 
( ( x  / 
( log `  x
) )  /  (π `  x ) ) )
8886, 87absidd 13533 . . . . . . 7  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  ( abs `  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  =  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )
8926, 88syl 17 . . . . . 6  |-  ( x  e.  ( 2 [,) +oo )  ->  ( abs `  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  =  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )
9089adantr 471 . . . . 5  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( abs `  (
( x  /  ( log `  x ) )  /  (π `  x ) ) )  =  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )
91 eqid 2462 . . . . . . . . . 10  |-  ( |_
`  ( x  / 
2 ) )  =  ( |_ `  (
x  /  2 ) )
9291chebbnd1lem3 24358 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  8  <_  x )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  x )  x.  (
( log `  x
)  /  x ) ) )
938, 92sylan 478 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) )  /  2
)  <  ( (π `  x )  x.  (
( log `  x
)  /  x ) ) )
941recni 9681 . . . . . . . . . 10  |-  2  e.  CC
95 2ne0 10730 . . . . . . . . . 10  |-  2  =/=  0
9641recni 9681 . . . . . . . . . 10  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  CC
9741, 81gt0ne0ii 10178 . . . . . . . . . 10  |-  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  =/=  0
98 recdiv 10341 . . . . . . . . . 10  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  e.  CC  /\  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) )  =/=  0 ) )  -> 
( 1  /  (
2  /  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) ) ) )  =  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 ) )
9994, 95, 96, 97, 98mp4an 684 . . . . . . . . 9  |-  ( 1  /  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  =  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 )
10099a1i 11 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( 1  /  (
2  /  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) ) ) )  =  ( ( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) )  /  2 ) )
10122rpcnd 11372 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) +oo )  ->  ( x  /  ( log `  x
) )  e.  CC )
10224nncnd 10653 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) +oo )  ->  (π `  x
)  e.  CC )
10322rpne0d 11375 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) +oo )  ->  ( x  /  ( log `  x
) )  =/=  0
)
10424nnne0d 10682 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) +oo )  ->  (π `  x
)  =/=  0 )
105101, 102, 103, 104recdivd 10428 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) +oo )  ->  ( 1  /  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  =  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )
106102, 101, 103divrecd 10414 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) +oo )  ->  ( (π `  x )  /  (
x  /  ( log `  x ) ) )  =  ( (π `  x
)  x.  ( 1  /  ( x  / 
( log `  x
) ) ) ) )
10720rpcnne0d 11379 . . . . . . . . . . . 12  |-  ( x  e.  ( 2 [,) +oo )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
10821rpcnne0d 11379 . . . . . . . . . . . 12  |-  ( x  e.  ( 2 [,) +oo )  ->  ( ( log `  x )  e.  CC  /\  ( log `  x )  =/=  0 ) )
109 recdiv 10341 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( ( log `  x )  e.  CC  /\  ( log `  x
)  =/=  0 ) )  ->  ( 1  /  ( x  / 
( log `  x
) ) )  =  ( ( log `  x
)  /  x ) )
110107, 108, 109syl2anc 671 . . . . . . . . . . 11  |-  ( x  e.  ( 2 [,) +oo )  ->  ( 1  /  ( x  / 
( log `  x
) ) )  =  ( ( log `  x
)  /  x ) )
111110oveq2d 6331 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) +oo )  ->  ( (π `  x )  x.  (
1  /  ( x  /  ( log `  x
) ) ) )  =  ( (π `  x
)  x.  ( ( log `  x )  /  x ) ) )
112105, 106, 1113eqtrd 2500 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) +oo )  ->  ( 1  /  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) )  =  ( (π `  x
)  x.  ( ( log `  x )  /  x ) ) )
113112adantr 471 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( 1  /  (
( x  /  ( log `  x ) )  /  (π `  x ) ) )  =  ( (π `  x )  x.  (
( log `  x
)  /  x ) ) )
11493, 100, 1133brtr4d 4447 . . . . . . 7  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( 1  /  (
2  /  ( ( log `  2 )  -  ( 1  / 
( 2  x.  _e ) ) ) ) )  <  ( 1  /  ( ( x  /  ( log `  x
) )  /  (π `  x ) ) ) )
11526adantr 471 . . . . . . . 8  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( ( x  / 
( log `  x
) )  /  (π `  x ) )  e.  RR+ )
116 elrp 11333 . . . . . . . . 9  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  <->  ( ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  e.  RR  /\  0  <  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) ) )
1171, 41, 36, 81divgt0ii 10552 . . . . . . . . . 10  |-  0  <  ( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )
118 ltrec 10516 . . . . . . . . . 10  |-  ( ( ( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  e.  RR  /\  0  < 
( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  /\  ( ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) )  e.  RR  /\  0  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) ) )  -> 
( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
11984, 117, 118mpanr12 696 . . . . . . . . 9  |-  ( ( ( ( x  / 
( log `  x
) )  /  (π `  x ) )  e.  RR  /\  0  < 
( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  ->  ( ( ( x  /  ( log `  x ) )  / 
(π `  x ) )  <  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
120116, 119sylbi 200 . . . . . . . 8  |-  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  e.  RR+  ->  ( ( ( x  /  ( log `  x ) )  /  (π `  x ) )  <  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
121115, 120syl 17 . . . . . . 7  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  <->  ( 1  / 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )  <  (
1  /  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) ) ) )
122114, 121mpbird 240 . . . . . 6  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( ( x  / 
( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )
123115rpred 11370 . . . . . . 7  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( ( x  / 
( log `  x
) )  /  (π `  x ) )  e.  RR )
124 ltle 9748 . . . . . . 7  |-  ( ( ( ( x  / 
( log `  x
) )  /  (π `  x ) )  e.  RR  /\  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) )  e.  RR )  ->  (
( ( x  / 
( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  ->  ( (
x  /  ( log `  x ) )  / 
(π `  x ) )  <_  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) ) )
125123, 84, 124sylancl 673 . . . . . 6  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( ( ( x  /  ( log `  x
) )  /  (π `  x ) )  < 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) )  ->  ( (
x  /  ( log `  x ) )  / 
(π `  x ) )  <_  ( 2  / 
( ( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) ) )
126122, 125mpd 15 . . . . 5  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( ( x  / 
( log `  x
) )  /  (π `  x ) )  <_ 
( 2  /  (
( log `  2
)  -  ( 1  /  ( 2  x.  _e ) ) ) ) )
12790, 126eqbrtrd 4437 . . . 4  |-  ( ( x  e.  ( 2 [,) +oo )  /\  8  <_  x )  -> 
( abs `  (
( x  /  ( log `  x ) )  /  (π `  x ) ) )  <_  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) ) )
128127adantl 472 . . 3  |-  ( ( T.  /\  ( x  e.  ( 2 [,) +oo )  /\  8  <_  x ) )  -> 
( abs `  (
( x  /  ( log `  x ) )  /  (π `  x ) ) )  <_  ( 2  /  ( ( log `  2 )  -  ( 1  /  (
2  x.  _e ) ) ) ) )
1295, 28, 30, 85, 128elo1d 13649 . 2  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  / 
( log `  x
) )  /  (π `  x ) ) )  e.  O(1) )
130129trud 1464 1  |-  ( x  e.  ( 2 [,) +oo )  |->  ( ( x  /  ( log `  x ) )  / 
(π `  x ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455   T. wtru 1456    e. wcel 1898    =/= wne 2633    C_ wss 3416   class class class wbr 4416    |-> cmpt 4475   ` cfv 5601  (class class class)co 6315   CCcc 9563   RRcr 9564   0cc0 9565   1c1 9566    x. cmul 9570   +oocpnf 9698   RR*cxr 9700    < clt 9701    <_ cle 9702    - cmin 9886    / cdiv 10297   NNcn 10637   2c2 10687   3c3 10688   4c4 10689   8c8 10693   ZZcz 10966   RR+crp 11331   [,)cico 11666   |_cfl 12058   ^cexp 12304   abscabs 13346   O(1)co1 13599   _eceu 14164   logclog 23553  πcppi 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643  ax-addf 9644  ax-mulf 9645
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-supp 6942  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-er 7389  df-map 7500  df-pm 7501  df-ixp 7549  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-fsupp 7910  df-fi 7951  df-sup 7982  df-inf 7983  df-oi 8051  df-card 8399  df-cda 8624  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-q 11294  df-rp 11332  df-xneg 11438  df-xadd 11439  df-xmul 11440  df-ioo 11668  df-ioc 11669  df-ico 11670  df-icc 11671  df-fz 11814  df-fzo 11947  df-fl 12060  df-mod 12129  df-seq 12246  df-exp 12305  df-fac 12492  df-bc 12520  df-hash 12548  df-shft 13179  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-limsup 13575  df-clim 13601  df-rlim 13602  df-o1 13603  df-lo1 13604  df-sum 13802  df-ef 14170  df-e 14171  df-sin 14172  df-cos 14173  df-pi 14175  df-dvds 14355  df-gcd 14518  df-prm 14672  df-pc 14836  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-starv 15254  df-sca 15255  df-vsca 15256  df-ip 15257  df-tset 15258  df-ple 15259  df-ds 15261  df-unif 15262  df-hom 15263  df-cco 15264  df-rest 15370  df-topn 15371  df-0g 15389  df-gsum 15390  df-topgen 15391  df-pt 15392  df-prds 15395  df-xrs 15449  df-qtop 15455  df-imas 15456  df-xps 15459  df-mre 15541  df-mrc 15542  df-acs 15544  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-submnd 16632  df-mulg 16725  df-cntz 17020  df-cmn 17481  df-psmet 19011  df-xmet 19012  df-met 19013  df-bl 19014  df-mopn 19015  df-fbas 19016  df-fg 19017  df-cnfld 19020  df-top 19970  df-bases 19971  df-topon 19972  df-topsp 19973  df-cld 20083  df-ntr 20084  df-cls 20085  df-nei 20163  df-lp 20201  df-perf 20202  df-cn 20292  df-cnp 20293  df-haus 20380  df-tx 20626  df-hmeo 20819  df-fil 20910  df-fm 21002  df-flim 21003  df-flf 21004  df-xms 21384  df-ms 21385  df-tms 21386  df-cncf 21959  df-limc 22870  df-dv 22871  df-log 23555  df-ppi 24075
This theorem is referenced by:  chtppilimlem2  24361  chto1lb  24365
  Copyright terms: Public domain W3C validator