![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > HSE Home > Th. List > ch1dle | Structured version Unicode version |
Description: A 1-dimensional subspace
is less than or equal to any member of ![]() |
Ref | Expression |
---|---|
ch1dle |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 24748 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sh1dle 25876 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan 471 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1709 ax-7 1729 ax-8 1759 ax-9 1761 ax-10 1776 ax-11 1781 ax-12 1793 ax-13 1944 ax-ext 2429 ax-rep 4487 ax-sep 4497 ax-nul 4505 ax-pow 4554 ax-pr 4615 ax-un 6458 ax-inf2 7934 ax-cc 8691 ax-cnex 9425 ax-resscn 9426 ax-1cn 9427 ax-icn 9428 ax-addcl 9429 ax-addrcl 9430 ax-mulcl 9431 ax-mulrcl 9432 ax-mulcom 9433 ax-addass 9434 ax-mulass 9435 ax-distr 9436 ax-i2m1 9437 ax-1ne0 9438 ax-1rid 9439 ax-rnegex 9440 ax-rrecex 9441 ax-cnre 9442 ax-pre-lttri 9443 ax-pre-lttrn 9444 ax-pre-ltadd 9445 ax-pre-mulgt0 9446 ax-pre-sup 9447 ax-addf 9448 ax-mulf 9449 ax-hilex 24522 ax-hfvadd 24523 ax-hvcom 24524 ax-hvass 24525 ax-hv0cl 24526 ax-hvaddid 24527 ax-hfvmul 24528 ax-hvmulid 24529 ax-hvmulass 24530 ax-hvdistr1 24531 ax-hvdistr2 24532 ax-hvmul0 24533 ax-hfi 24602 ax-his1 24605 ax-his2 24606 ax-his3 24607 ax-his4 24608 ax-hcompl 24725 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-fal 1376 df-ex 1588 df-nf 1591 df-sb 1702 df-eu 2263 df-mo 2264 df-clab 2436 df-cleq 2442 df-clel 2445 df-nfc 2598 df-ne 2643 df-nel 2644 df-ral 2797 df-rex 2798 df-reu 2799 df-rmo 2800 df-rab 2801 df-v 3056 df-sbc 3271 df-csb 3373 df-dif 3415 df-un 3417 df-in 3419 df-ss 3426 df-pss 3428 df-nul 3722 df-if 3876 df-pw 3946 df-sn 3962 df-pr 3964 df-tp 3966 df-op 3968 df-uni 4176 df-int 4213 df-iun 4257 df-iin 4258 df-br 4377 df-opab 4435 df-mpt 4436 df-tr 4470 df-eprel 4716 df-id 4720 df-po 4725 df-so 4726 df-fr 4763 df-se 4764 df-we 4765 df-ord 4806 df-on 4807 df-lim 4808 df-suc 4809 df-xp 4930 df-rel 4931 df-cnv 4932 df-co 4933 df-dm 4934 df-rn 4935 df-res 4936 df-ima 4937 df-iota 5465 df-fun 5504 df-fn 5505 df-f 5506 df-f1 5507 df-fo 5508 df-f1o 5509 df-fv 5510 df-isom 5511 df-riota 6137 df-ov 6179 df-oprab 6180 df-mpt2 6181 df-of 6406 df-om 6563 df-1st 6663 df-2nd 6664 df-supp 6777 df-recs 6918 df-rdg 6952 df-1o 7006 df-2o 7007 df-oadd 7010 df-omul 7011 df-er 7187 df-map 7302 df-pm 7303 df-ixp 7350 df-en 7397 df-dom 7398 df-sdom 7399 df-fin 7400 df-fsupp 7708 df-fi 7748 df-sup 7778 df-oi 7811 df-card 8196 df-acn 8199 df-cda 8424 df-pnf 9507 df-mnf 9508 df-xr 9509 df-ltxr 9510 df-le 9511 df-sub 9684 df-neg 9685 df-div 10081 df-nn 10410 df-2 10467 df-3 10468 df-4 10469 df-5 10470 df-6 10471 df-7 10472 df-8 10473 df-9 10474 df-10 10475 df-n0 10667 df-z 10734 df-dec 10843 df-uz 10949 df-q 11041 df-rp 11079 df-xneg 11176 df-xadd 11177 df-xmul 11178 df-ioo 11391 df-ico 11393 df-icc 11394 df-fz 11525 df-fzo 11636 df-fl 11729 df-seq 11894 df-exp 11953 df-hash 12191 df-cj 12676 df-re 12677 df-im 12678 df-sqr 12812 df-abs 12813 df-clim 13054 df-rlim 13055 df-sum 13252 df-struct 14264 df-ndx 14265 df-slot 14266 df-base 14267 df-sets 14268 df-ress 14269 df-plusg 14339 df-mulr 14340 df-starv 14341 df-sca 14342 df-vsca 14343 df-ip 14344 df-tset 14345 df-ple 14346 df-ds 14348 df-unif 14349 df-hom 14350 df-cco 14351 df-rest 14449 df-topn 14450 df-0g 14468 df-gsum 14469 df-topgen 14470 df-pt 14471 df-prds 14474 df-xrs 14528 df-qtop 14533 df-imas 14534 df-xps 14536 df-mre 14612 df-mrc 14613 df-acs 14615 df-mnd 15503 df-submnd 15553 df-mulg 15636 df-cntz 15923 df-cmn 16369 df-psmet 17904 df-xmet 17905 df-met 17906 df-bl 17907 df-mopn 17908 df-fbas 17909 df-fg 17910 df-cnfld 17914 df-top 18605 df-bases 18607 df-topon 18608 df-topsp 18609 df-cld 18725 df-ntr 18726 df-cls 18727 df-nei 18804 df-cn 18933 df-cnp 18934 df-lm 18935 df-haus 19021 df-tx 19237 df-hmeo 19430 df-fil 19521 df-fm 19613 df-flim 19614 df-flf 19615 df-xms 19997 df-ms 19998 df-tms 19999 df-cfil 20868 df-cau 20869 df-cmet 20870 df-grpo 23799 df-gid 23800 df-ginv 23801 df-gdiv 23802 df-ablo 23890 df-subgo 23910 df-vc 24045 df-nv 24091 df-va 24094 df-ba 24095 df-sm 24096 df-0v 24097 df-vs 24098 df-nmcv 24099 df-ims 24100 df-dip 24217 df-ssp 24241 df-ph 24334 df-cbn 24385 df-hnorm 24491 df-hba 24492 df-hvsub 24494 df-hlim 24495 df-hcau 24496 df-sh 24730 df-ch 24745 df-oc 24776 df-ch0 24777 df-span 24833 |
This theorem is referenced by: atom1d 25878 |
Copyright terms: Public domain | W3C validator |