Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgr3tr4 Structured version   Unicode version

Theorem cgr3tr4 29930
Description: Transitivity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
cgr3tr4  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. G ,  <. H ,  I >. >. )  ->  <. D ,  <. E ,  F >. >.Cgr3 <. G ,  <. H ,  I >. >. ) )

Proof of Theorem cgr3tr4
StepHypRef Expression
1 3an6 1307 . . 3  |-  ( ( ( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. A ,  B >.Cgr <. G ,  H >. )  /\  ( <. A ,  C >.Cgr <. D ,  F >.  /\  <. A ,  C >.Cgr
<. G ,  I >. )  /\  ( <. B ,  C >.Cgr <. E ,  F >.  /\  <. B ,  C >.Cgr
<. H ,  I >. ) )  <->  ( ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  /\  ( <. A ,  B >.Cgr <. G ,  H >.  /\  <. A ,  C >.Cgr
<. G ,  I >.  /\ 
<. B ,  C >.Cgr <. H ,  I >. ) ) )
2 simpl 455 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  N  e.  NN )
3 simpr11 1078 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  A  e.  ( EE `  N ) )
4 simpr12 1079 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  B  e.  ( EE `  N ) )
5 simpr21 1081 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  D  e.  ( EE `  N ) )
6 simpr22 1082 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  E  e.  ( EE `  N ) )
7 simpr31 1084 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  G  e.  ( EE `  N ) )
8 simpr32 1085 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  H  e.  ( EE `  N ) )
9 axcgrtr 24420 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. A ,  B >.Cgr <. G ,  H >. )  ->  <. D ,  E >.Cgr
<. G ,  H >. ) )
102, 3, 4, 5, 6, 7, 8, 9syl133anc 1249 . . . 4  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  B >.Cgr
<. G ,  H >. )  ->  <. D ,  E >.Cgr
<. G ,  H >. ) )
11 simpr13 1080 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  C  e.  ( EE `  N ) )
12 simpr23 1083 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  F  e.  ( EE `  N ) )
13 simpr33 1086 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  ->  I  e.  ( EE `  N ) )
14 axcgrtr 24420 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) )  ->  (
( <. A ,  C >.Cgr
<. D ,  F >.  /\ 
<. A ,  C >.Cgr <. G ,  I >. )  ->  <. D ,  F >.Cgr
<. G ,  I >. ) )
152, 3, 11, 5, 12, 7, 13, 14syl133anc 1249 . . . 4  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  C >.Cgr <. D ,  F >.  /\  <. A ,  C >.Cgr
<. G ,  I >. )  ->  <. D ,  F >.Cgr
<. G ,  I >. ) )
16 axcgrtr 24420 . . . . 5  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) )  ->  (
( <. B ,  C >.Cgr
<. E ,  F >.  /\ 
<. B ,  C >.Cgr <. H ,  I >. )  ->  <. E ,  F >.Cgr
<. H ,  I >. ) )
172, 4, 11, 6, 12, 8, 13, 16syl133anc 1249 . . . 4  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( <. B ,  C >.Cgr <. E ,  F >.  /\  <. B ,  C >.Cgr
<. H ,  I >. )  ->  <. E ,  F >.Cgr
<. H ,  I >. ) )
1810, 15, 173anim123d 1304 . . 3  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  B >.Cgr <. G ,  H >. )  /\  ( <. A ,  C >.Cgr <. D ,  F >.  /\  <. A ,  C >.Cgr
<. G ,  I >. )  /\  ( <. B ,  C >.Cgr <. E ,  F >.  /\  <. B ,  C >.Cgr
<. H ,  I >. ) )  ->  ( <. D ,  E >.Cgr <. G ,  H >.  /\  <. D ,  F >.Cgr <. G ,  I >.  /\  <. E ,  F >.Cgr
<. H ,  I >. ) ) )
191, 18syl5bir 218 . 2  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  /\  ( <. A ,  B >.Cgr <. G ,  H >.  /\  <. A ,  C >.Cgr
<. G ,  I >.  /\ 
<. B ,  C >.Cgr <. H ,  I >. ) )  ->  ( <. D ,  E >.Cgr <. G ,  H >.  /\  <. D ,  F >.Cgr <. G ,  I >.  /\  <. E ,  F >.Cgr
<. H ,  I >. ) ) )
20 brcgr3 29924 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr <. D ,  F >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) )
21203adant3r3 1205 . . 3  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  (
<. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) ) )
22 brcgr3 29924 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. G ,  <. H ,  I >. >.  <->  ( <. A ,  B >.Cgr <. G ,  H >.  /\  <. A ,  C >.Cgr <. G ,  I >.  /\  <. B ,  C >.Cgr
<. H ,  I >. ) ) )
23223adant3r2 1204 . . 3  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  <. B ,  C >. >.Cgr3 <. G ,  <. H ,  I >. >.  <->  (
<. A ,  B >.Cgr <. G ,  H >.  /\ 
<. A ,  C >.Cgr <. G ,  I >.  /\ 
<. B ,  C >.Cgr <. H ,  I >. ) ) )
2421, 23anbi12d 708 . 2  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. G ,  <. H ,  I >. >. )  <->  ( ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  /\  ( <. A ,  B >.Cgr <. G ,  H >.  /\  <. A ,  C >.Cgr
<. G ,  I >.  /\ 
<. B ,  C >.Cgr <. H ,  I >. ) ) ) )
25 brcgr3 29924 . . 3  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) )  ->  ( <. D ,  <. E ,  F >. >.Cgr3 <. G ,  <. H ,  I >. >.  <->  ( <. D ,  E >.Cgr <. G ,  H >.  /\  <. D ,  F >.Cgr <. G ,  I >.  /\  <. E ,  F >.Cgr
<. H ,  I >. ) ) )
26253adant3r1 1203 . 2  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( <. D ,  <. E ,  F >. >.Cgr3 <. G ,  <. H ,  I >. >.  <->  (
<. D ,  E >.Cgr <. G ,  H >.  /\ 
<. D ,  F >.Cgr <. G ,  I >.  /\ 
<. E ,  F >.Cgr <. H ,  I >. ) ) )
2719, 24, 263imtr4d 268 1  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
)  /\  I  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. G ,  <. H ,  I >. >. )  ->  <. D ,  <. E ,  F >. >.Cgr3 <. G ,  <. H ,  I >. >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    e. wcel 1823   <.cop 4022   class class class wbr 4439   ` cfv 5570   NNcn 10531   EEcee 24393  Cgrccgr 24395  Cgr3ccgr3 29914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-seq 12090  df-sum 13591  df-ee 24396  df-cgr 24398  df-cgr3 29919
This theorem is referenced by:  btwnxfr  29934
  Copyright terms: Public domain W3C validator