MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmolem Structured version   Visualization version   Unicode version

Theorem cfsmolem 8700
Description: Lemma for cfsmo 8701. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypotheses
Ref Expression
cfsmolem.2  |-  F  =  ( z  e.  _V  |->  ( ( g `  dom  z )  u.  U_ t  e.  dom  z  suc  ( z `  t
) ) )
cfsmolem.3  |-  G  =  (recs ( F )  |`  ( cf `  A
) )
Assertion
Ref Expression
cfsmolem  |-  ( A  e.  On  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) )
Distinct variable groups:    f, g,
t, w, z, A   
f, F, t, z   
f, G, w, z
Allowed substitution hints:    F( w, g)    G( t, g)

Proof of Theorem cfsmolem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 8688 . 2  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A )
-1-1-> A  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  (
g `  w )
) )
2 cfon 8685 . . . . . . . . . . . 12  |-  ( cf `  A )  e.  On
32oneli 5530 . . . . . . . . . . 11  |-  ( x  e.  ( cf `  A
)  ->  x  e.  On )
433ad2ant3 1031 . . . . . . . . . 10  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  x  e.  On )
5 eleq1 2517 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  e.  ( cf `  A )  <->  y  e.  ( cf `  A ) ) )
653anbi3d 1345 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  <->  ( g : ( cf `  A
) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) ) ) )
7 fveq2 5865 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
87eleq1d 2513 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( G `  x
)  e.  A  <->  ( G `  y )  e.  A
) )
96, 8imbi12d 322 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( ( g : ( cf `  A
) -1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( G `  x )  e.  A )  <->  ( (
g : ( cf `  A ) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  ( G `  y )  e.  A ) ) )
10 simpl1 1011 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  /\  y  e.  x )  ->  g : ( cf `  A
) -1-1-> A )
11 simpl2 1012 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  /\  y  e.  x )  ->  A  e.  On )
12 ontr1 5469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( cf `  A )  e.  On  ->  (
( y  e.  x  /\  x  e.  ( cf `  A ) )  ->  y  e.  ( cf `  A ) ) )
132, 12ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
y  e.  ( cf `  A ) )
1413ancoms 455 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( cf `  A )  /\  y  e.  x )  ->  y  e.  ( cf `  A
) )
15143ad2antl3 1172 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  /\  y  e.  x )  ->  y  e.  ( cf `  A
) )
16 pm2.27 40 . . . . . . . . . . . . . . . 16  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  (
( ( g : ( cf `  A
) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  ( G `  y )  e.  A )  ->  ( G `  y )  e.  A ) )
1710, 11, 15, 16syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  /\  y  e.  x )  ->  (
( ( g : ( cf `  A
) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  ( G `  y )  e.  A )  ->  ( G `  y )  e.  A ) )
1817ralimdva 2796 . . . . . . . . . . . . . 14  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( A. y  e.  x  ( ( g : ( cf `  A
) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  ( G `  y )  e.  A )  ->  A. y  e.  x  ( G `  y )  e.  A
) )
19 cfsmolem.3 . . . . . . . . . . . . . . . . . . . . 21  |-  G  =  (recs ( F )  |`  ( cf `  A
) )
2019fveq1i 5866 . . . . . . . . . . . . . . . . . . . 20  |-  ( G `
 x )  =  ( (recs ( F )  |`  ( cf `  A ) ) `  x )
21 fvres 5879 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( cf `  A
)  ->  ( (recs ( F )  |`  ( cf `  A ) ) `
 x )  =  (recs ( F ) `
 x ) )
2220, 21syl5eq 2497 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( cf `  A
)  ->  ( G `  x )  =  (recs ( F ) `  x ) )
23 recsval 7122 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  On  ->  (recs ( F ) `  x
)  =  ( F `
 (recs ( F )  |`  x )
) )
24 recsfnon 7121 . . . . . . . . . . . . . . . . . . . . . . . . 25  |- recs ( F )  Fn  On
25 fnfun 5673 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  (recs ( F )  Fn  On  ->  Fun recs ( F ) )
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Fun recs ( F )
27 vex 3048 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  x  e. 
_V
28 resfunexg 6130 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Fun recs ( F )  /\  x  e.  _V )  ->  (recs ( F )  |`  x )  e.  _V )
2926, 27, 28mp2an 678 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (recs ( F )  |`  x
)  e.  _V
30 dmeq 5035 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  (recs ( F )  |`  x )  ->  dom  z  =  dom  (recs ( F )  |`  x ) )
3130fveq2d 5869 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  (recs ( F )  |`  x )  ->  ( g `  dom  z )  =  ( g `  dom  (recs ( F )  |`  x
) ) )
32 fveq1 5864 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  (recs ( F )  |`  x )  ->  ( z `  t
)  =  ( (recs ( F )  |`  x ) `  t
) )
33 suceq 5488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z `  t )  =  ( (recs ( F )  |`  x
) `  t )  ->  suc  ( z `  t )  =  suc  ( (recs ( F )  |`  x ) `  t
) )
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  (recs ( F )  |`  x )  ->  suc  ( z `  t )  =  suc  ( (recs ( F )  |`  x ) `  t
) )
3530, 34iuneq12d 4304 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  (recs ( F )  |`  x )  ->  U_ t  e.  dom  z  suc  ( z `  t )  =  U_ t  e.  dom  (recs ( F )  |`  x
) suc  ( (recs ( F )  |`  x
) `  t )
)
3631, 35uneq12d 3589 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  (recs ( F )  |`  x )  ->  ( ( g `  dom  z )  u.  U_ t  e.  dom  z  suc  ( z `  t
) )  =  ( ( g `  dom  (recs ( F )  |`  x ) )  u. 
U_ t  e.  dom  (recs ( F )  |`  x ) suc  (
(recs ( F )  |`  x ) `  t
) ) )
37 cfsmolem.2 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F  =  ( z  e.  _V  |->  ( ( g `  dom  z )  u.  U_ t  e.  dom  z  suc  ( z `  t
) ) )
38 fvex 5875 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( g `
 dom  (recs ( F )  |`  x
) )  e.  _V
3929dmex 6726 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  dom  (recs ( F )  |`  x
)  e.  _V
40 fvex 5875 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (recs ( F )  |`  x ) `  t
)  e.  _V
4140sucex 6638 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  suc  (
(recs ( F )  |`  x ) `  t
)  e.  _V
4239, 41iunex 6773 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  U_ t  e.  dom  (recs ( F )  |`  x ) suc  ( (recs ( F )  |`  x ) `  t )  e.  _V
4338, 42unex 6589 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( g `  dom  (recs ( F )  |`  x
) )  u.  U_ t  e.  dom  (recs ( F )  |`  x
) suc  ( (recs ( F )  |`  x
) `  t )
)  e.  _V
4436, 37, 43fvmpt 5948 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (recs ( F )  |`  x )  e.  _V  ->  ( F `  (recs ( F )  |`  x
) )  =  ( ( g `  dom  (recs ( F )  |`  x ) )  u. 
U_ t  e.  dom  (recs ( F )  |`  x ) suc  (
(recs ( F )  |`  x ) `  t
) ) )
4529, 44ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F `
 (recs ( F )  |`  x )
)  =  ( ( g `  dom  (recs ( F )  |`  x
) )  u.  U_ t  e.  dom  (recs ( F )  |`  x
) suc  ( (recs ( F )  |`  x
) `  t )
)
4623, 45syl6eq 2501 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  On  ->  (recs ( F ) `  x
)  =  ( ( g `  dom  (recs ( F )  |`  x
) )  u.  U_ t  e.  dom  (recs ( F )  |`  x
) suc  ( (recs ( F )  |`  x
) `  t )
) )
47 onss 6617 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  On  ->  x  C_  On )
48 fnssres 5689 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (recs ( F )  Fn  On  /\  x  C_  On )  ->  (recs ( F )  |`  x
)  Fn  x )
4924, 47, 48sylancr 669 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  On  ->  (recs ( F )  |`  x
)  Fn  x )
50 fndm 5675 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (recs ( F )  |`  x )  Fn  x  ->  dom  (recs ( F )  |`  x )  =  x )
51 fveq2 5865 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( dom  (recs ( F )  |`  x )  =  x  ->  ( g `  dom  (recs ( F )  |`  x ) )  =  ( g `  x
) )
52 iuneq1 4292 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( dom  (recs ( F )  |`  x )  =  x  ->  U_ t  e.  dom  (recs ( F )  |`  x ) suc  (
(recs ( F )  |`  x ) `  t
)  =  U_ t  e.  x  suc  ( (recs ( F )  |`  x ) `  t
) )
53 fvres 5879 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  e.  x  ->  (
(recs ( F )  |`  x ) `  t
)  =  (recs ( F ) `  t
) )
54 suceq 5488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( (recs ( F )  |`  x ) `  t
)  =  (recs ( F ) `  t
)  ->  suc  ( (recs ( F )  |`  x ) `  t
)  =  suc  (recs ( F ) `  t
) )
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  e.  x  ->  suc  ( (recs ( F )  |`  x ) `  t
)  =  suc  (recs ( F ) `  t
) )
5655iuneq2i 4297 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  U_ t  e.  x  suc  ( (recs ( F )  |`  x ) `  t
)  =  U_ t  e.  x  suc  (recs ( F ) `  t
)
57 fveq2 5865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  =  t  ->  (recs ( F ) `  y
)  =  (recs ( F ) `  t
) )
58 suceq 5488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (recs ( F ) `  y )  =  (recs ( F ) `  t )  ->  suc  (recs ( F ) `  y )  =  suc  (recs ( F ) `  t ) )
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  t  ->  suc  (recs ( F ) `  y )  =  suc  (recs ( F ) `  t ) )
6059cbviunv 4317 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  U_ y  e.  x  suc  (recs ( F ) `  y
)  =  U_ t  e.  x  suc  (recs ( F ) `  t
)
6156, 60eqtr4i 2476 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  U_ t  e.  x  suc  ( (recs ( F )  |`  x ) `  t
)  =  U_ y  e.  x  suc  (recs ( F ) `  y
)
6252, 61syl6eq 2501 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( dom  (recs ( F )  |`  x )  =  x  ->  U_ t  e.  dom  (recs ( F )  |`  x ) suc  (
(recs ( F )  |`  x ) `  t
)  =  U_ y  e.  x  suc  (recs ( F ) `  y
) )
6351, 62uneq12d 3589 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( dom  (recs ( F )  |`  x )  =  x  ->  ( ( g `
 dom  (recs ( F )  |`  x
) )  u.  U_ t  e.  dom  (recs ( F )  |`  x
) suc  ( (recs ( F )  |`  x
) `  t )
)  =  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
6449, 50, 633syl 18 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  On  ->  (
( g `  dom  (recs ( F )  |`  x ) )  u. 
U_ t  e.  dom  (recs ( F )  |`  x ) suc  (
(recs ( F )  |`  x ) `  t
) )  =  ( ( g `  x
)  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
6546, 64eqtrd 2485 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  (recs ( F ) `  x
)  =  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
663, 65syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( cf `  A
)  ->  (recs ( F ) `  x
)  =  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
6722, 66eqtrd 2485 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( cf `  A
)  ->  ( G `  x )  =  ( ( g `  x
)  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
68673ad2ant2 1030 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
)  /\  A. y  e.  x  ( G `  y )  e.  A
)  ->  ( G `  x )  =  ( ( g `  x
)  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
69 eloni 5433 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  Ord  A )
7069adantl 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On )  ->  Ord  A )
71703ad2ant1 1029 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
)  /\  A. y  e.  x  ( G `  y )  e.  A
)  ->  Ord  A )
72 f1f 5779 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g : ( cf `  A
) -1-1-> A  ->  g : ( cf `  A
) --> A )
7372ffvelrnda 6022 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  x  e.  ( cf `  A ) )  -> 
( g `  x
)  e.  A )
7473adantlr 721 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
) )  ->  (
g `  x )  e.  A )
75743adant3 1028 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
)  /\  A. y  e.  x  ( G `  y )  e.  A
)  ->  ( g `  x )  e.  A
)
7619fveq1i 5866 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( G `
 y )  =  ( (recs ( F )  |`  ( cf `  A ) ) `  y )
77 fvres 5879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( cf `  A
)  ->  ( (recs ( F )  |`  ( cf `  A ) ) `
 y )  =  (recs ( F ) `
 y ) )
7813, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
( (recs ( F )  |`  ( cf `  A ) ) `  y )  =  (recs ( F ) `  y ) )
7976, 78syl5eq 2497 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
( G `  y
)  =  (recs ( F ) `  y
) )
8079adantrl 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  x  /\  ( A  e.  On  /\  x  e.  ( cf `  A ) ) )  ->  ( G `  y )  =  (recs ( F ) `  y ) )
8180ancoms 455 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  /\  y  e.  x )  ->  ( G `  y
)  =  (recs ( F ) `  y
) )
8281eleq1d 2513 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  /\  y  e.  x )  ->  ( ( G `  y )  e.  A  <->  (recs ( F ) `  y )  e.  A
) )
83 ordsucss 6645 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Ord 
A  ->  ( (recs ( F ) `  y
)  e.  A  ->  suc  (recs ( F ) `
 y )  C_  A ) )
8469, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  e.  On  ->  (
(recs ( F ) `
 y )  e.  A  ->  suc  (recs ( F ) `  y
)  C_  A )
)
8584ad2antrr 732 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  /\  y  e.  x )  ->  ( (recs ( F ) `  y )  e.  A  ->  suc  (recs ( F ) `  y )  C_  A
) )
8682, 85sylbid 219 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  /\  y  e.  x )  ->  ( ( G `  y )  e.  A  ->  suc  (recs ( F ) `  y ) 
C_  A ) )
8786ralimdva 2796 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  -> 
( A. y  e.  x  ( G `  y )  e.  A  ->  A. y  e.  x  suc  (recs ( F ) `
 y )  C_  A ) )
88 iunss 4319 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( U_ y  e.  x  suc  (recs ( F ) `  y )  C_  A  <->  A. y  e.  x  suc  (recs ( F ) `  y )  C_  A
)
8987, 88syl6ibr 231 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  -> 
( A. y  e.  x  ( G `  y )  e.  A  ->  U_ y  e.  x  suc  (recs ( F ) `
 y )  C_  A ) )
90893impia 1205 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  C_  A )
91 onelon 5448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( A  e.  On  /\  (recs ( F ) `  y )  e.  A
)  ->  (recs ( F ) `  y
)  e.  On )
9291ex 436 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A  e.  On  ->  (
(recs ( F ) `
 y )  e.  A  ->  (recs ( F ) `  y
)  e.  On ) )
9392ad2antrr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  /\  y  e.  x )  ->  ( (recs ( F ) `  y )  e.  A  ->  (recs ( F ) `  y
)  e.  On ) )
9482, 93sylbid 219 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  /\  y  e.  x )  ->  ( ( G `  y )  e.  A  ->  (recs ( F ) `
 y )  e.  On ) )
95 suceloni 6640 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (recs ( F ) `  y )  e.  On  ->  suc  (recs ( F ) `  y )  e.  On )
9694, 95syl6 34 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  /\  y  e.  x )  ->  ( ( G `  y )  e.  A  ->  suc  (recs ( F ) `  y )  e.  On ) )
9796ralimdva 2796 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A ) )  -> 
( A. y  e.  x  ( G `  y )  e.  A  ->  A. y  e.  x  suc  (recs ( F ) `
 y )  e.  On ) )
98973impia 1205 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  A. y  e.  x  suc  (recs ( F ) `  y
)  e.  On )
99 fvex 5875 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  (recs ( F ) `  y
)  e.  _V
10099sucex 6638 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  suc  (recs ( F ) `  y
)  e.  _V
10127, 100iunonOLD 7058 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. y  e.  x  suc  (recs ( F ) `  y )  e.  On  ->  U_ y  e.  x  suc  (recs ( F ) `
 y )  e.  On )
10298, 101syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  On )
103 simp1 1008 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  A  e.  On )
104 onsseleq 5464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
U_ y  e.  x  suc  (recs ( F ) `
 y )  e.  On  /\  A  e.  On )  ->  ( U_ y  e.  x  suc  (recs ( F ) `
 y )  C_  A 
<->  ( U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A  \/  U_ y  e.  x  suc  (recs ( F ) `  y )  =  A ) ) )
105102, 103, 104syl2anc 667 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  ( U_ y  e.  x  suc  (recs ( F ) `
 y )  C_  A 
<->  ( U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A  \/  U_ y  e.  x  suc  (recs ( F ) `  y )  =  A ) ) )
106 idd 25 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  ( U_ y  e.  x  suc  (recs ( F ) `
 y )  e.  A  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A ) )
107 simpll 760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  x  e.  ( cf `  A
) )
108 simprr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  A  e.  On )
1093ad2antrr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  x  e.  On )
1103, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  e.  ( cf `  A
)  ->  (recs ( F )  |`  x
)  Fn  x )
111110adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  (recs ( F )  |`  x
)  Fn  x )
11279ancoms 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( x  e.  ( cf `  A )  /\  y  e.  x )  ->  ( G `  y )  =  (recs ( F ) `
 y ) )
113 fvres 5879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( y  e.  x  ->  (
(recs ( F )  |`  x ) `  y
)  =  (recs ( F ) `  y
) )
114113adantl 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( x  e.  ( cf `  A )  /\  y  e.  x )  ->  (
(recs ( F )  |`  x ) `  y
)  =  (recs ( F ) `  y
) )
115112, 114eqtr4d 2488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( x  e.  ( cf `  A )  /\  y  e.  x )  ->  ( G `  y )  =  ( (recs ( F )  |`  x
) `  y )
)
116115eleq1d 2513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( x  e.  ( cf `  A )  /\  y  e.  x )  ->  (
( G `  y
)  e.  A  <->  ( (recs ( F )  |`  x
) `  y )  e.  A ) )
117116ralbidva 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  e.  ( cf `  A
)  ->  ( A. y  e.  x  ( G `  y )  e.  A  <->  A. y  e.  x  ( (recs ( F )  |`  x ) `  y
)  e.  A ) )
118117biimpa 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  A. y  e.  x  ( (recs ( F )  |`  x
) `  y )  e.  A )
119 ffnfv 6049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (recs ( F )  |`  x ) : x --> A  <->  ( (recs ( F )  |`  x
)  Fn  x  /\  A. y  e.  x  ( (recs ( F )  |`  x ) `  y
)  e.  A ) )
120111, 118, 119sylanbrc 670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  (recs ( F )  |`  x
) : x --> A )
121120adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  (recs ( F )  |`  x
) : x --> A )
122 eleq2 2518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  ->  ( t  e. 
U_ y  e.  x  suc  (recs ( F ) `
 y )  <->  t  e.  A ) )
123122biimpar 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( (
U_ y  e.  x  suc  (recs ( F ) `
 y )  =  A  /\  t  e.  A )  ->  t  e.  U_ y  e.  x  suc  (recs ( F ) `
 y ) )
124123adantrl 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
U_ y  e.  x  suc  (recs ( F ) `
 y )  =  A  /\  ( A  e.  On  /\  t  e.  A ) )  -> 
t  e.  U_ y  e.  x  suc  (recs ( F ) `  y
) )
1251243adant1 1026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  U_ y  e.  x  suc  (recs ( F ) `  y
)  =  A  /\  ( A  e.  On  /\  t  e.  A ) )  ->  t  e.  U_ y  e.  x  suc  (recs ( F ) `  y ) )
126 onelon 5448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( A  e.  On  /\  t  e.  A )  ->  t  e.  On )
127126adantr 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( A  e.  On  /\  t  e.  A )  /\  ( (recs ( F )  |`  x
) : x --> A  /\  y  e.  x )
)  ->  t  e.  On )
128113adantl 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  y  e.  x )  ->  (
(recs ( F )  |`  x ) `  y
)  =  (recs ( F ) `  y
) )
129 ffvelrn 6020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  y  e.  x )  ->  (
(recs ( F )  |`  x ) `  y
)  e.  A )
130128, 129eqeltrrd 2530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  y  e.  x )  ->  (recs ( F ) `  y
)  e.  A )
131130, 91sylan2 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  |-  ( ( A  e.  On  /\  ( (recs ( F )  |`  x ) : x --> A  /\  y  e.  x ) )  -> 
(recs ( F ) `
 y )  e.  On )
132131adantlr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( ( A  e.  On  /\  t  e.  A )  /\  ( (recs ( F )  |`  x
) : x --> A  /\  y  e.  x )
)  ->  (recs ( F ) `  y
)  e.  On )
133 onsssuc 5510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  |-  ( ( t  e.  On  /\  (recs ( F ) `  y )  e.  On )  ->  ( t  C_  (recs ( F ) `  y )  <->  t  e.  suc  (recs ( F ) `
 y ) ) )
134127, 132, 133syl2anc 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( ( A  e.  On  /\  t  e.  A )  /\  ( (recs ( F )  |`  x
) : x --> A  /\  y  e.  x )
)  ->  ( t  C_  (recs ( F ) `
 y )  <->  t  e.  suc  (recs ( F ) `
 y ) ) )
135134anassrs 654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( ( ( A  e.  On  /\  t  e.  A )  /\  (recs ( F )  |`  x
) : x --> A )  /\  y  e.  x
)  ->  ( t  C_  (recs ( F ) `
 y )  <->  t  e.  suc  (recs ( F ) `
 y ) ) )
136135rexbidva 2898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( A  e.  On  /\  t  e.  A )  /\  (recs ( F )  |`  x ) : x --> A )  ->  ( E. y  e.  x  t  C_  (recs ( F ) `  y )  <->  E. y  e.  x  t  e.  suc  (recs ( F ) `
 y ) ) )
137 eliun 4283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( t  e.  U_ y  e.  x  suc  (recs ( F ) `  y
)  <->  E. y  e.  x  t  e.  suc  (recs ( F ) `  y
) )
138136, 137syl6bbr 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( ( A  e.  On  /\  t  e.  A )  /\  (recs ( F )  |`  x ) : x --> A )  ->  ( E. y  e.  x  t  C_  (recs ( F ) `  y )  <->  t  e.  U_ y  e.  x  suc  (recs ( F ) `  y ) ) )
139138ancoms 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  ( A  e.  On  /\  t  e.  A ) )  -> 
( E. y  e.  x  t  C_  (recs ( F ) `  y
)  <->  t  e.  U_ y  e.  x  suc  (recs ( F ) `  y ) ) )
1401393adant2 1027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  U_ y  e.  x  suc  (recs ( F ) `  y
)  =  A  /\  ( A  e.  On  /\  t  e.  A ) )  ->  ( E. y  e.  x  t  C_  (recs ( F ) `
 y )  <->  t  e.  U_ y  e.  x  suc  (recs ( F ) `  y ) ) )
141125, 140mpbird 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  U_ y  e.  x  suc  (recs ( F ) `  y
)  =  A  /\  ( A  e.  On  /\  t  e.  A ) )  ->  E. y  e.  x  t  C_  (recs ( F ) `  y ) )
1421413expa 1208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( (recs ( F )  |`  x ) : x --> A  /\  U_ y  e.  x  suc  (recs ( F ) `  y )  =  A )  /\  ( A  e.  On  /\  t  e.  A ) )  ->  E. y  e.  x  t  C_  (recs ( F ) `  y ) )
143142anassrs 654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( (recs ( F )  |`  x
) : x --> A  /\  U_ y  e.  x  suc  (recs ( F ) `  y )  =  A )  /\  A  e.  On )  /\  t  e.  A )  ->  E. y  e.  x  t  C_  (recs ( F ) `  y ) )
144143ralrimiva 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( (recs ( F )  |`  x ) : x --> A  /\  U_ y  e.  x  suc  (recs ( F ) `  y )  =  A )  /\  A  e.  On )  ->  A. t  e.  A  E. y  e.  x  t  C_  (recs ( F ) `  y ) )
145144expl 624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (recs ( F )  |`  x ) : x --> A  ->  ( ( U_ y  e.  x  suc  (recs ( F ) `
 y )  =  A  /\  A  e.  On )  ->  A. t  e.  A  E. y  e.  x  t  C_  (recs ( F ) `  y ) ) )
146120, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  (
( U_ y  e.  x  suc  (recs ( F ) `
 y )  =  A  /\  A  e.  On )  ->  A. t  e.  A  E. y  e.  x  t  C_  (recs ( F ) `  y ) ) )
147146imp 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  A. t  e.  A  E. y  e.  x  t  C_  (recs ( F ) `  y ) )
148 feq1 5710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f  =  (recs ( F )  |`  x )  ->  ( f : x --> A  <->  (recs ( F )  |`  x ) : x --> A ) )
149 fveq1 5864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( f  =  (recs ( F )  |`  x )  ->  ( f `  y
)  =  ( (recs ( F )  |`  x ) `  y
) )
150149sseq2d 3460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( f  =  (recs ( F )  |`  x )  ->  ( t  C_  (
f `  y )  <->  t 
C_  ( (recs ( F )  |`  x
) `  y )
) )
151150rexbidv 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f  =  (recs ( F )  |`  x )  ->  ( E. y  e.  x  t  C_  (
f `  y )  <->  E. y  e.  x  t 
C_  ( (recs ( F )  |`  x
) `  y )
) )
152113sseq2d 3460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( y  e.  x  ->  (
t  C_  ( (recs ( F )  |`  x
) `  y )  <->  t 
C_  (recs ( F ) `  y ) ) )
153152rexbiia 2888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( E. y  e.  x  t 
C_  ( (recs ( F )  |`  x
) `  y )  <->  E. y  e.  x  t 
C_  (recs ( F ) `  y ) )
154151, 153syl6bb 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( f  =  (recs ( F )  |`  x )  ->  ( E. y  e.  x  t  C_  (
f `  y )  <->  E. y  e.  x  t 
C_  (recs ( F ) `  y ) ) )
155154ralbidv 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f  =  (recs ( F )  |`  x )  ->  ( A. t  e.  A  E. y  e.  x  t  C_  (
f `  y )  <->  A. t  e.  A  E. y  e.  x  t  C_  (recs ( F ) `
 y ) ) )
156148, 155anbi12d 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( f  =  (recs ( F )  |`  x )  ->  ( ( f : x --> A  /\  A. t  e.  A  E. y  e.  x  t  C_  ( f `  y
) )  <->  ( (recs ( F )  |`  x
) : x --> A  /\  A. t  e.  A  E. y  e.  x  t  C_  (recs ( F ) `
 y ) ) ) )
15729, 156spcev 3141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( (recs ( F )  |`  x ) : x --> A  /\  A. t  e.  A  E. y  e.  x  t  C_  (recs ( F ) `  y ) )  ->  E. f ( f : x --> A  /\  A. t  e.  A  E. y  e.  x  t  C_  ( f `  y
) ) )
158121, 147, 157syl2anc 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  E. f
( f : x --> A  /\  A. t  e.  A  E. y  e.  x  t  C_  ( f `  y
) ) )
159 cfflb 8689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( E. f ( f : x --> A  /\  A. t  e.  A  E. y  e.  x  t  C_  ( f `  y
) )  ->  ( cf `  A )  C_  x ) )
160159imp 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  E. f ( f : x --> A  /\  A. t  e.  A  E. y  e.  x  t  C_  ( f `  y
) ) )  -> 
( cf `  A
)  C_  x )
161108, 109, 158, 160syl21anc 1267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  ( cf `  A )  C_  x )
162 ontri1 5457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( cf `  A
)  e.  On  /\  x  e.  On )  ->  ( ( cf `  A
)  C_  x  <->  -.  x  e.  ( cf `  A
) ) )
1632, 3, 162sylancr 669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  ( cf `  A
)  ->  ( ( cf `  A )  C_  x 
<->  -.  x  e.  ( cf `  A ) ) )
164163ad2antrr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  (
( cf `  A
)  C_  x  <->  -.  x  e.  ( cf `  A
) ) )
165161, 164mpbid 214 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  -.  x  e.  ( cf `  A ) )
166107, 165pm2.21dd 178 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  /\  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  /\  A  e.  On ) )  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A )
167166ex 436 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  (
( U_ y  e.  x  suc  (recs ( F ) `
 y )  =  A  /\  A  e.  On )  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A ) )
168167expcomd 440 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  ( A  e.  On  ->  (
U_ y  e.  x  suc  (recs ( F ) `
 y )  =  A  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A ) ) )
169168com12 32 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  e.  On  ->  (
( x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A
)  ->  ( U_ y  e.  x  suc  (recs ( F ) `  y )  =  A  ->  U_ y  e.  x  suc  (recs ( F ) `
 y )  e.  A ) ) )
1701693impib 1206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  ( U_ y  e.  x  suc  (recs ( F ) `
 y )  =  A  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A ) )
171106, 170jaod 382 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  (
( U_ y  e.  x  suc  (recs ( F ) `
 y )  e.  A  \/  U_ y  e.  x  suc  (recs ( F ) `  y
)  =  A )  ->  U_ y  e.  x  suc  (recs ( F ) `
 y )  e.  A ) )
172105, 171sylbid 219 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  ( U_ y  e.  x  suc  (recs ( F ) `
 y )  C_  A  ->  U_ y  e.  x  suc  (recs ( F ) `
 y )  e.  A ) )
17390, 172mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  On  /\  x  e.  ( cf `  A )  /\  A. y  e.  x  ( G `  y )  e.  A )  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A )
1741733adant1l 1260 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
)  /\  A. y  e.  x  ( G `  y )  e.  A
)  ->  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A )
175 ordunel 6654 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  A  /\  (
g `  x )  e.  A  /\  U_ y  e.  x  suc  (recs ( F ) `  y
)  e.  A )  ->  ( ( g `
 x )  u. 
U_ y  e.  x  suc  (recs ( F ) `
 y ) )  e.  A )
17671, 75, 174, 175syl3anc 1268 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
)  /\  A. y  e.  x  ( G `  y )  e.  A
)  ->  ( (
g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `
 y ) )  e.  A )
17768, 176eqeltrd 2529 . . . . . . . . . . . . . . . 16  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
)  /\  A. y  e.  x  ( G `  y )  e.  A
)  ->  ( G `  x )  e.  A
)
1781773expia 1210 . . . . . . . . . . . . . . 15  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A  e.  On )  /\  x  e.  ( cf `  A
) )  ->  ( A. y  e.  x  ( G `  y )  e.  A  ->  ( G `  x )  e.  A ) )
1791783impa 1203 . . . . . . . . . . . . . 14  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( A. y  e.  x  ( G `  y )  e.  A  ->  ( G `  x )  e.  A ) )
18018, 179syld 45 . . . . . . . . . . . . 13  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( A. y  e.  x  ( ( g : ( cf `  A
) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  ( G `  y )  e.  A )  ->  ( G `  x )  e.  A ) )
181180com12 32 . . . . . . . . . . . 12  |-  ( A. y  e.  x  (
( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  ( G `  y )  e.  A )  ->  (
( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( G `  x )  e.  A ) )
182181a1i 11 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( g : ( cf `  A
) -1-1-> A  /\  A  e.  On  /\  y  e.  ( cf `  A
) )  ->  ( G `  y )  e.  A )  ->  (
( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( G `  x )  e.  A ) ) )
1839, 182tfis2 6683 . . . . . . . . . 10  |-  ( x  e.  On  ->  (
( g : ( cf `  A )
-1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( G `  x )  e.  A ) )
1844, 183mpcom 37 . . . . . . . . 9  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On  /\  x  e.  ( cf `  A
) )  ->  ( G `  x )  e.  A )
1851843expia 1210 . . . . . . . 8  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On )  ->  ( x  e.  ( cf `  A )  ->  ( G `  x )  e.  A
) )
186185ralrimiv 2800 . . . . . . 7  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On )  ->  A. x  e.  ( cf `  A ) ( G `  x
)  e.  A )
1872onssi 6664 . . . . . . . . 9  |-  ( cf `  A )  C_  On
188 fnssres 5689 . . . . . . . . . 10  |-  ( (recs ( F )  Fn  On  /\  ( cf `  A )  C_  On )  ->  (recs ( F )  |`  ( cf `  A ) )  Fn  ( cf `  A
) )
18919fneq1i 5670 . . . . . . . . . 10  |-  ( G  Fn  ( cf `  A
)  <->  (recs ( F )  |`  ( cf `  A
) )  Fn  ( cf `  A ) )
190188, 189sylibr 216 . . . . . . . . 9  |-  ( (recs ( F )  Fn  On  /\  ( cf `  A )  C_  On )  ->  G  Fn  ( cf `  A ) )
19124, 187, 190mp2an 678 . . . . . . . 8  |-  G  Fn  ( cf `  A )
192 ffnfv 6049 . . . . . . . 8  |-  ( G : ( cf `  A
) --> A  <->  ( G  Fn  ( cf `  A
)  /\  A. x  e.  ( cf `  A
) ( G `  x )  e.  A
) )
193191, 192mpbiran 929 . . . . . . 7  |-  ( G : ( cf `  A
) --> A  <->  A. x  e.  ( cf `  A
) ( G `  x )  e.  A
)
194186, 193sylibr 216 . . . . . 6  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On )  ->  G : ( cf `  A ) --> A )
195194adantlr 721 . . . . 5  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  (
g `  w )
)  /\  A  e.  On )  ->  G :
( cf `  A
) --> A )
196 onss 6617 . . . . . . . 8  |-  ( A  e.  On  ->  A  C_  On )
197196adantl 468 . . . . . . 7  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On )  ->  A  C_  On )
1982onordi 5527 . . . . . . . 8  |-  Ord  ( cf `  A )
19999sucid 5502 . . . . . . . . . . . . . . . . . 18  |-  (recs ( F ) `  y
)  e.  suc  (recs ( F ) `  y
)
200 fveq2 5865 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  y  ->  (recs ( F ) `  t
)  =  (recs ( F ) `  y
) )
201 suceq 5488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (recs ( F ) `  t )  =  (recs ( F ) `  y )  ->  suc  (recs ( F ) `  t )  =  suc  (recs ( F ) `  y ) )
202200, 201syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  y  ->  suc  (recs ( F ) `  t )  =  suc  (recs ( F ) `  y ) )
203202eleq2d 2514 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  y  ->  (
(recs ( F ) `
 y )  e. 
suc  (recs ( F ) `
 t )  <->  (recs ( F ) `  y
)  e.  suc  (recs ( F ) `  y
) ) )
204203rspcev 3150 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  x  /\  (recs ( F ) `  y )  e.  suc  (recs ( F ) `  y ) )  ->  E. t  e.  x  (recs ( F ) `  y )  e.  suc  (recs ( F ) `  t ) )
205199, 204mpan2 677 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  x  ->  E. t  e.  x  (recs ( F ) `  y
)  e.  suc  (recs ( F ) `  t
) )
206 eliun 4283 . . . . . . . . . . . . . . . . 17  |-  ( (recs ( F ) `  y )  e.  U_ t  e.  x  suc  (recs ( F ) `  t )  <->  E. t  e.  x  (recs ( F ) `  y
)  e.  suc  (recs ( F ) `  t
) )
207205, 206sylibr 216 . . . . . . . . . . . . . . . 16  |-  ( y  e.  x  ->  (recs ( F ) `  y
)  e.  U_ t  e.  x  suc  (recs ( F ) `  t
) )
208207, 60syl6eleqr 2540 . . . . . . . . . . . . . . 15  |-  ( y  e.  x  ->  (recs ( F ) `  y
)  e.  U_ y  e.  x  suc  (recs ( F ) `  y
) )
209 elun2 3602 . . . . . . . . . . . . . . 15  |-  ( (recs ( F ) `  y )  e.  U_ y  e.  x  suc  (recs ( F ) `  y )  ->  (recs ( F ) `  y
)  e.  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
210208, 209syl 17 . . . . . . . . . . . . . 14  |-  ( y  e.  x  ->  (recs ( F ) `  y
)  e.  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y
) ) )
211210adantr 467 . . . . . . . . . . . . 13  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
(recs ( F ) `
 y )  e.  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y ) ) )
2123adantl 468 . . . . . . . . . . . . . 14  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  ->  x  e.  On )
213212, 65syl 17 . . . . . . . . . . . . 13  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
(recs ( F ) `
 x )  =  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y ) ) )
214211, 213eleqtrrd 2532 . . . . . . . . . . . 12  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
(recs ( F ) `
 y )  e.  (recs ( F ) `
 x ) )
21522adantl 468 . . . . . . . . . . . 12  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
( G `  x
)  =  (recs ( F ) `  x
) )
216214, 79, 2153eltr4d 2544 . . . . . . . . . . 11  |-  ( ( y  e.  x  /\  x  e.  ( cf `  A ) )  -> 
( G `  y
)  e.  ( G `
 x ) )
217216expcom 437 . . . . . . . . . 10  |-  ( x  e.  ( cf `  A
)  ->  ( y  e.  x  ->  ( G `
 y )  e.  ( G `  x
) ) )
218217ralrimiv 2800 . . . . . . . . 9  |-  ( x  e.  ( cf `  A
)  ->  A. y  e.  x  ( G `  y )  e.  ( G `  x ) )
219218rgen 2747 . . . . . . . 8  |-  A. x  e.  ( cf `  A
) A. y  e.  x  ( G `  y )  e.  ( G `  x )
220 issmo2 7068 . . . . . . . . 9  |-  ( G : ( cf `  A
) --> A  ->  (
( A  C_  On  /\ 
Ord  ( cf `  A
)  /\  A. x  e.  ( cf `  A
) A. y  e.  x  ( G `  y )  e.  ( G `  x ) )  ->  Smo  G ) )
221220com12 32 . . . . . . . 8  |-  ( ( A  C_  On  /\  Ord  ( cf `  A )  /\  A. x  e.  ( cf `  A
) A. y  e.  x  ( G `  y )  e.  ( G `  x ) )  ->  ( G : ( cf `  A
) --> A  ->  Smo  G ) )
222198, 219, 221mp3an23 1356 . . . . . . 7  |-  ( A 
C_  On  ->  ( G : ( cf `  A
) --> A  ->  Smo  G ) )
223197, 194, 222sylc 62 . . . . . 6  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A  e.  On )  ->  Smo  G )
224223adantlr 721 . . . . 5  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  (
g `  w )
)  /\  A  e.  On )  ->  Smo  G
)
225 fveq2 5865 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
g `  x )  =  ( g `  w ) )
226 fveq2 5865 . . . . . . . . . . 11  |-  ( x  =  w  ->  ( G `  x )  =  ( G `  w ) )
227225, 226sseq12d 3461 . . . . . . . . . 10  |-  ( x  =  w  ->  (
( g `  x
)  C_  ( G `  x )  <->  ( g `  w )  C_  ( G `  w )
) )
228 ssun1 3597 . . . . . . . . . . 11  |-  ( g `
 x )  C_  ( ( g `  x )  u.  U_ y  e.  x  suc  (recs ( F ) `  y ) )
229228, 67syl5sseqr 3481 . . . . . . . . . 10  |-  ( x  e.  ( cf `  A
)  ->  ( g `  x )  C_  ( G `  x )
)
230227, 229vtoclga 3113 . . . . . . . . 9  |-  ( w  e.  ( cf `  A
)  ->  ( g `  w )  C_  ( G `  w )
)
231 sstr 3440 . . . . . . . . . 10  |-  ( ( z  C_  ( g `  w )  /\  (
g `  w )  C_  ( G `  w
) )  ->  z  C_  ( G `  w
) )
232231expcom 437 . . . . . . . . 9  |-  ( ( g `  w ) 
C_  ( G `  w )  ->  (
z  C_  ( g `  w )  ->  z  C_  ( G `  w
) ) )
233230, 232syl 17 . . . . . . . 8  |-  ( w  e.  ( cf `  A
)  ->  ( z  C_  ( g `  w
)  ->  z  C_  ( G `  w ) ) )
234233reximia 2853 . . . . . . 7  |-  ( E. w  e.  ( cf `  A ) z  C_  ( g `  w
)  ->  E. w  e.  ( cf `  A
) z  C_  ( G `  w )
)
235234ralimi 2781 . . . . . 6  |-  ( A. z  e.  A  E. w  e.  ( cf `  A ) z  C_  ( g `  w
)  ->  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  ( G `  w )
)
236235ad2antlr 733 . . . . 5  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  (
g `  w )
)  /\  A  e.  On )  ->  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  ( G `  w )
)
237 fnex 6132 . . . . . . 7  |-  ( ( G  Fn  ( cf `  A )  /\  ( cf `  A )  e.  On )  ->  G  e.  _V )
238191, 2, 237mp2an 678 . . . . . 6  |-  G  e. 
_V
239 feq1 5710 . . . . . . 7  |-  ( f  =  G  ->  (
f : ( cf `  A ) --> A  <->  G :
( cf `  A
) --> A ) )
240 smoeq 7069 . . . . . . 7  |-  ( f  =  G  ->  ( Smo  f  <->  Smo  G ) )
241 fveq1 5864 . . . . . . . . . 10  |-  ( f  =  G  ->  (
f `  w )  =  ( G `  w ) )
242241sseq2d 3460 . . . . . . . . 9  |-  ( f  =  G  ->  (
z  C_  ( f `  w )  <->  z  C_  ( G `  w ) ) )
243242rexbidv 2901 . . . . . . . 8  |-  ( f  =  G  ->  ( E. w  e.  ( cf `  A ) z 
C_  ( f `  w )  <->  E. w  e.  ( cf `  A
) z  C_  ( G `  w )
) )
244243ralbidv 2827 . . . . . . 7  |-  ( f  =  G  ->  ( A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w )  <->  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  ( G `  w )
) )
245239, 240, 2443anbi123d 1339 . . . . . 6  |-  ( f  =  G  ->  (
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) )  <->  ( G : ( cf `  A
) --> A  /\  Smo  G  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  ( G `  w )
) ) )
246238, 245spcev 3141 . . . . 5  |-  ( ( G : ( cf `  A ) --> A  /\  Smo  G  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  ( G `  w )
)  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) )
247195, 224, 236, 246syl3anc 1268 . . . 4  |-  ( ( ( g : ( cf `  A )
-1-1-> A  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  (
g `  w )
)  /\  A  e.  On )  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) )
248247expcom 437 . . 3  |-  ( A  e.  On  ->  (
( g : ( cf `  A )
-1-1-> A  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  (
g `  w )
)  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) ) )
249248exlimdv 1779 . 2  |-  ( A  e.  On  ->  ( E. g ( g : ( cf `  A
) -1-1-> A  /\  A. z  e.  A  E. w  e.  ( cf `  A
) z  C_  (
g `  w )
)  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) ) )
2501, 249mpd 15 1  |-  ( A  e.  On  ->  E. f
( f : ( cf `  A ) --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  ( cf `  A ) z 
C_  ( f `  w ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887   A.wral 2737   E.wrex 2738   _Vcvv 3045    u. cun 3402    C_ wss 3404   U_ciun 4278    |-> cmpt 4461   dom cdm 4834    |` cres 4836   Ord word 5422   Oncon0 5423   suc csuc 5425   Fun wfun 5576    Fn wfn 5577   -->wf 5578   -1-1->wf1 5579   ` cfv 5582   Smo wsmo 7064  recscrecs 7089   cfccf 8371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-smo 7065  df-recs 7090  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-card 8373  df-cf 8375  df-acn 8376
This theorem is referenced by:  cfsmo  8701
  Copyright terms: Public domain W3C validator