MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslbn Structured version   Unicode version

Theorem cfslbn 8705
Description: Any subset of  A smaller than its cofinality has union less than  A. (This is the contrapositive to cfslb 8704.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1  |-  A  e. 
_V
Assertion
Ref Expression
cfslbn  |-  ( ( Lim  A  /\  B  C_  A  /\  B  ~<  ( cf `  A ) )  ->  U. B  e.  A )

Proof of Theorem cfslbn
StepHypRef Expression
1 uniss 4240 . . . . . . . 8  |-  ( B 
C_  A  ->  U. B  C_ 
U. A )
2 limuni 5502 . . . . . . . . 9  |-  ( Lim 
A  ->  A  =  U. A )
32sseq2d 3492 . . . . . . . 8  |-  ( Lim 
A  ->  ( U. B  C_  A  <->  U. B  C_  U. A ) )
41, 3syl5ibr 224 . . . . . . 7  |-  ( Lim 
A  ->  ( B  C_  A  ->  U. B  C_  A ) )
54imp 430 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A )  ->  U. B  C_  A )
6 limord 5501 . . . . . . . . . . . 12  |-  ( Lim 
A  ->  Ord  A )
7 ordsson 6631 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  A  C_  On )
86, 7syl 17 . . . . . . . . . . 11  |-  ( Lim 
A  ->  A  C_  On )
9 sstr2 3471 . . . . . . . . . . 11  |-  ( B 
C_  A  ->  ( A  C_  On  ->  B  C_  On ) )
108, 9syl5com 31 . . . . . . . . . 10  |-  ( Lim 
A  ->  ( B  C_  A  ->  B  C_  On ) )
11 ssorduni 6627 . . . . . . . . . 10  |-  ( B 
C_  On  ->  Ord  U. B )
1210, 11syl6 34 . . . . . . . . 9  |-  ( Lim 
A  ->  ( B  C_  A  ->  Ord  U. B
) )
1312, 6jctird 546 . . . . . . . 8  |-  ( Lim 
A  ->  ( B  C_  A  ->  ( Ord  U. B  /\  Ord  A
) ) )
14 ordsseleq 5471 . . . . . . . 8  |-  ( ( Ord  U. B  /\  Ord  A )  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) )
1513, 14syl6 34 . . . . . . 7  |-  ( Lim 
A  ->  ( B  C_  A  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) ) )
1615imp 430 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) )
175, 16mpbid 213 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  e.  A  \/  U. B  =  A ) )
1817ord 378 . . . 4  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( -.  U. B  e.  A  ->  U. B  =  A ) )
19 cfslb.1 . . . . . . 7  |-  A  e. 
_V
2019cfslb 8704 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( cf `  A )  ~<_  B )
21 domnsym 7708 . . . . . 6  |-  ( ( cf `  A )  ~<_  B  ->  -.  B  ~<  ( cf `  A
) )
2220, 21syl 17 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  -.  B  ~<  ( cf `  A
) )
23223expia 1207 . . . 4  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  =  A  ->  -.  B  ~<  ( cf `  A ) ) )
2418, 23syld 45 . . 3  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( -.  U. B  e.  A  ->  -.  B  ~<  ( cf `  A ) ) )
2524con4d 108 . 2  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( B  ~<  ( cf `  A
)  ->  U. B  e.  A ) )
26253impia 1202 1  |-  ( ( Lim  A  /\  B  C_  A  /\  B  ~<  ( cf `  A ) )  ->  U. B  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   _Vcvv 3080    C_ wss 3436   U.cuni 4219   class class class wbr 4423   Ord word 5441   Oncon0 5442   Lim wlim 5443   ` cfv 5601    ~<_ cdom 7579    ~< csdm 7580   cfccf 8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6268  df-wrecs 7040  df-recs 7102  df-er 7375  df-en 7582  df-dom 7583  df-sdom 7584  df-card 8382  df-cf 8384
This theorem is referenced by:  cfslb2n  8706
  Copyright terms: Public domain W3C validator