MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslbn Structured version   Unicode version

Theorem cfslbn 8664
Description: Any subset of  A smaller than its cofinality has union less than  A. (This is the contrapositive to cfslb 8663.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1  |-  A  e. 
_V
Assertion
Ref Expression
cfslbn  |-  ( ( Lim  A  /\  B  C_  A  /\  B  ~<  ( cf `  A ) )  ->  U. B  e.  A )

Proof of Theorem cfslbn
StepHypRef Expression
1 uniss 4272 . . . . . . . 8  |-  ( B 
C_  A  ->  U. B  C_ 
U. A )
2 limuni 4947 . . . . . . . . 9  |-  ( Lim 
A  ->  A  =  U. A )
32sseq2d 3527 . . . . . . . 8  |-  ( Lim 
A  ->  ( U. B  C_  A  <->  U. B  C_  U. A ) )
41, 3syl5ibr 221 . . . . . . 7  |-  ( Lim 
A  ->  ( B  C_  A  ->  U. B  C_  A ) )
54imp 429 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A )  ->  U. B  C_  A )
6 limord 4946 . . . . . . . . . . . 12  |-  ( Lim 
A  ->  Ord  A )
7 ordsson 6624 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  A  C_  On )
86, 7syl 16 . . . . . . . . . . 11  |-  ( Lim 
A  ->  A  C_  On )
9 sstr2 3506 . . . . . . . . . . 11  |-  ( B 
C_  A  ->  ( A  C_  On  ->  B  C_  On ) )
108, 9syl5com 30 . . . . . . . . . 10  |-  ( Lim 
A  ->  ( B  C_  A  ->  B  C_  On ) )
11 ssorduni 6620 . . . . . . . . . 10  |-  ( B 
C_  On  ->  Ord  U. B )
1210, 11syl6 33 . . . . . . . . 9  |-  ( Lim 
A  ->  ( B  C_  A  ->  Ord  U. B
) )
1312, 6jctird 544 . . . . . . . 8  |-  ( Lim 
A  ->  ( B  C_  A  ->  ( Ord  U. B  /\  Ord  A
) ) )
14 ordsseleq 4916 . . . . . . . 8  |-  ( ( Ord  U. B  /\  Ord  A )  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) )
1513, 14syl6 33 . . . . . . 7  |-  ( Lim 
A  ->  ( B  C_  A  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) ) )
1615imp 429 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) )
175, 16mpbid 210 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  e.  A  \/  U. B  =  A ) )
1817ord 377 . . . 4  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( -.  U. B  e.  A  ->  U. B  =  A ) )
19 cfslb.1 . . . . . . 7  |-  A  e. 
_V
2019cfslb 8663 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( cf `  A )  ~<_  B )
21 domnsym 7662 . . . . . 6  |-  ( ( cf `  A )  ~<_  B  ->  -.  B  ~<  ( cf `  A
) )
2220, 21syl 16 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  -.  B  ~<  ( cf `  A
) )
23223expia 1198 . . . 4  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  =  A  ->  -.  B  ~<  ( cf `  A ) ) )
2418, 23syld 44 . . 3  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( -.  U. B  e.  A  ->  -.  B  ~<  ( cf `  A ) ) )
2524con4d 105 . 2  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( B  ~<  ( cf `  A
)  ->  U. B  e.  A ) )
26253impia 1193 1  |-  ( ( Lim  A  /\  B  C_  A  /\  B  ~<  ( cf `  A ) )  ->  U. B  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   _Vcvv 3109    C_ wss 3471   U.cuni 4251   class class class wbr 4456   Ord word 4886   Oncon0 4887   Lim wlim 4888   ` cfv 5594    ~<_ cdom 7533    ~< csdm 7534   cfccf 8335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-recs 7060  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-card 8337  df-cf 8339
This theorem is referenced by:  cfslb2n  8665
  Copyright terms: Public domain W3C validator