MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb2n Structured version   Unicode version

Theorem cfslb2n 8561
Description: Any small collection of small subsets of  A cannot have union  A, where "small" means smaller than the cofinality. This is a stronger version of cfslb 8559. This is a common application of cofinality: under AC,  ( aleph `  1
) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1  |-  A  e. 
_V
Assertion
Ref Expression
cfslb2n  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( B  ~<  ( cf `  A )  ->  U. B  =/=  A
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem cfslb2n
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limord 4851 . . . . . . . . . 10  |-  ( Lim 
A  ->  Ord  A )
2 ordsson 6524 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  C_  On )
3 sstr 3425 . . . . . . . . . . 11  |-  ( ( x  C_  A  /\  A  C_  On )  ->  x  C_  On )
43expcom 433 . . . . . . . . . 10  |-  ( A 
C_  On  ->  ( x 
C_  A  ->  x  C_  On ) )
51, 2, 43syl 20 . . . . . . . . 9  |-  ( Lim 
A  ->  ( x  C_  A  ->  x  C_  On ) )
6 onsucuni 6562 . . . . . . . . 9  |-  ( x 
C_  On  ->  x  C_  suc  U. x )
75, 6syl6 33 . . . . . . . 8  |-  ( Lim 
A  ->  ( x  C_  A  ->  x  C_  suc  U. x ) )
87adantrd 466 . . . . . . 7  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  x  C_ 
suc  U. x ) )
98ralimdv 2792 . . . . . 6  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  x  C_  suc  U. x ) )
10 uniiun 4296 . . . . . . 7  |-  U. B  =  U_ x  e.  B  x
11 ss2iun 4259 . . . . . . 7  |-  ( A. x  e.  B  x  C_ 
suc  U. x  ->  U_ x  e.  B  x  C_  U_ x  e.  B  suc  U. x
)
1210, 11syl5eqss 3461 . . . . . 6  |-  ( A. x  e.  B  x  C_ 
suc  U. x  ->  U. B  C_ 
U_ x  e.  B  suc  U. x )
139, 12syl6 33 . . . . 5  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U. B  C_ 
U_ x  e.  B  suc  U. x ) )
1413imp 427 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  U. B  C_  U_ x  e.  B  suc  U. x
)
15 cfslb.1 . . . . . . . . . 10  |-  A  e. 
_V
1615cfslbn 8560 . . . . . . . . 9  |-  ( ( Lim  A  /\  x  C_  A  /\  x  ~<  ( cf `  A ) )  ->  U. x  e.  A )
17163expib 1197 . . . . . . . 8  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U. x  e.  A ) )
18 ordsucss 6552 . . . . . . . 8  |-  ( Ord 
A  ->  ( U. x  e.  A  ->  suc  U. x  C_  A ) )
191, 17, 18sylsyld 56 . . . . . . 7  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  suc  U. x  C_  A )
)
2019ralimdv 2792 . . . . . 6  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  suc  U. x  C_  A ) )
21 iunss 4284 . . . . . 6  |-  ( U_ x  e.  B  suc  U. x  C_  A  <->  A. x  e.  B  suc  U. x  C_  A )
2220, 21syl6ibr 227 . . . . 5  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U_ x  e.  B  suc  U. x  C_  A ) )
2322imp 427 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  U_ x  e.  B  suc  U. x  C_  A
)
24 sseq1 3438 . . . . . 6  |-  ( U. B  =  A  ->  ( U. B  C_  U_ x  e.  B  suc  U. x  <->  A 
C_  U_ x  e.  B  suc  U. x ) )
25 eqss 3432 . . . . . . 7  |-  ( U_ x  e.  B  suc  U. x  =  A  <->  ( U_ x  e.  B  suc  U. x  C_  A  /\  A  C_  U_ x  e.  B  suc  U. x
) )
2625simplbi2com 625 . . . . . 6  |-  ( A 
C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  U_ x  e.  B  suc  U. x  =  A ) )
2724, 26syl6bi 228 . . . . 5  |-  ( U. B  =  A  ->  ( U. B  C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  U_ x  e.  B  suc  U. x  =  A ) ) )
2827com3l 81 . . . 4  |-  ( U. B  C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  ( U. B  =  A  ->  U_ x  e.  B  suc  U. x  =  A ) ) )
2914, 23, 28sylc 60 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U. B  =  A  ->  U_ x  e.  B  suc  U. x  =  A ) )
30 limsuc 6583 . . . . . . . . 9  |-  ( Lim 
A  ->  ( U. x  e.  A  <->  suc  U. x  e.  A ) )
3117, 30sylibd 214 . . . . . . . 8  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  suc  U. x  e.  A ) )
3231ralimdv 2792 . . . . . . 7  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  suc  U. x  e.  A ) )
3332imp 427 . . . . . 6  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  A. x  e.  B  suc  U. x  e.  A
)
34 r19.29 2917 . . . . . . . 8  |-  ( ( A. x  e.  B  suc  U. x  e.  A  /\  E. x  e.  B  y  =  suc  U. x
)  ->  E. x  e.  B  ( suc  U. x  e.  A  /\  y  =  suc  U. x
) )
35 eleq1 2454 . . . . . . . . . 10  |-  ( y  =  suc  U. x  ->  ( y  e.  A  <->  suc  U. x  e.  A
) )
3635biimparc 485 . . . . . . . . 9  |-  ( ( suc  U. x  e.  A  /\  y  =  suc  U. x )  ->  y  e.  A
)
3736rexlimivw 2871 . . . . . . . 8  |-  ( E. x  e.  B  ( suc  U. x  e.  A  /\  y  =  suc  U. x )  ->  y  e.  A
)
3834, 37syl 16 . . . . . . 7  |-  ( ( A. x  e.  B  suc  U. x  e.  A  /\  E. x  e.  B  y  =  suc  U. x
)  ->  y  e.  A )
3938ex 432 . . . . . 6  |-  ( A. x  e.  B  suc  U. x  e.  A  -> 
( E. x  e.  B  y  =  suc  U. x  ->  y  e.  A ) )
4033, 39syl 16 . . . . 5  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( E. x  e.  B  y  =  suc  U. x  ->  y  e.  A ) )
4140abssdv 3488 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  { y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )
42 vex 3037 . . . . . . . . 9  |-  x  e. 
_V
4342uniex 6495 . . . . . . . 8  |-  U. x  e.  _V
4443sucex 6545 . . . . . . 7  |-  suc  U. x  e.  _V
4544dfiun2 4277 . . . . . 6  |-  U_ x  e.  B  suc  U. x  =  U. { y  |  E. x  e.  B  y  =  suc  U. x }
4645eqeq1i 2389 . . . . 5  |-  ( U_ x  e.  B  suc  U. x  =  A  <->  U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A )
4715cfslb 8559 . . . . . 6  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A  /\  U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A )  ->  ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } )
48473expia 1196 . . . . 5  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )  ->  ( U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A  ->  ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
4946, 48syl5bi 217 . . . 4  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )  ->  ( U_ x  e.  B  suc  U. x  =  A  ->  ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
5041, 49syldan 468 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U_ x  e.  B  suc  U. x  =  A  ->  ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
51 eqid 2382 . . . . . . . . 9  |-  ( x  e.  B  |->  suc  U. x )  =  ( x  e.  B  |->  suc  U. x )
5251rnmpt 5161 . . . . . . . 8  |-  ran  (
x  e.  B  |->  suc  U. x )  =  {
y  |  E. x  e.  B  y  =  suc  U. x }
5344, 51fnmpti 5617 . . . . . . . . . 10  |-  ( x  e.  B  |->  suc  U. x )  Fn  B
54 dffn4 5709 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  suc  U. x )  Fn  B  <->  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x ) )
5553, 54mpbi 208 . . . . . . . . 9  |-  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )
56 relsdom 7442 . . . . . . . . . . 11  |-  Rel  ~<
5756brrelexi 4954 . . . . . . . . . 10  |-  ( B 
~<  ( cf `  A
)  ->  B  e.  _V )
58 breq1 4370 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
y  ~<  ( cf `  A
)  <->  B  ~<  ( cf `  A ) ) )
59 foeq2 5700 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  (
( x  e.  B  |->  suc  U. x ) : y -onto-> ran  (
x  e.  B  |->  suc  U. x )  <->  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x ) ) )
60 breq2 4371 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  ( ran  ( x  e.  B  |->  suc  U. x )  ~<_  y  <->  ran  ( x  e.  B  |->  suc  U. x
)  ~<_  B ) )
6159, 60imbi12d 318 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
( ( x  e.  B  |->  suc  U. x
) : y -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y )  <-> 
( ( x  e.  B  |->  suc  U. x
) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) )
6258, 61imbi12d 318 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( y  ~<  ( cf `  A )  -> 
( ( x  e.  B  |->  suc  U. x
) : y -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )  <->  ( B  ~<  ( cf `  A )  ->  ( ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) ) )
63 cfon 8548 . . . . . . . . . . . . 13  |-  ( cf `  A )  e.  On
64 sdomdom 7462 . . . . . . . . . . . . 13  |-  ( y 
~<  ( cf `  A
)  ->  y  ~<_  ( cf `  A ) )
65 ondomen 8331 . . . . . . . . . . . . 13  |-  ( ( ( cf `  A
)  e.  On  /\  y  ~<_  ( cf `  A
) )  ->  y  e.  dom  card )
6663, 64, 65sylancr 661 . . . . . . . . . . . 12  |-  ( y 
~<  ( cf `  A
)  ->  y  e.  dom  card )
67 fodomnum 8351 . . . . . . . . . . . 12  |-  ( y  e.  dom  card  ->  ( ( x  e.  B  |->  suc  U. x ) : y -onto-> ran  (
x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( y 
~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : y
-onto->
ran  ( x  e.  B  |->  suc  U. x
)  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )
6962, 68vtoclg 3092 . . . . . . . . . 10  |-  ( B  e.  _V  ->  ( B  ~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) )
7057, 69mpcom 36 . . . . . . . . 9  |-  ( B 
~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) )
7155, 70mpi 17 . . . . . . . 8  |-  ( B 
~<  ( cf `  A
)  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B )
7252, 71syl5eqbrr 4401 . . . . . . 7  |-  ( B 
~<  ( cf `  A
)  ->  { y  |  E. x  e.  B  y  =  suc  U. x }  ~<_  B )
73 domtr 7487 . . . . . . 7  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  { y  |  E. x  e.  B  y  =  suc  U. x }  ~<_  B )  -> 
( cf `  A
)  ~<_  B )
7472, 73sylan2 472 . . . . . 6  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  B  ~<  ( cf `  A ) )  ->  ( cf `  A
)  ~<_  B )
75 domnsym 7562 . . . . . 6  |-  ( ( cf `  A )  ~<_  B  ->  -.  B  ~<  ( cf `  A
) )
7674, 75syl 16 . . . . 5  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  B  ~<  ( cf `  A ) )  ->  -.  B  ~<  ( cf `  A ) )
7776pm2.01da 440 . . . 4  |-  ( ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  ->  -.  B  ~<  ( cf `  A ) )
7877a1i 11 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  ->  -.  B  ~<  ( cf `  A ) ) )
7929, 50, 783syld 55 . 2  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U. B  =  A  ->  -.  B  ~<  ( cf `  A
) ) )
8079necon2ad 2595 1  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( B  ~<  ( cf `  A )  ->  U. B  =/=  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826   {cab 2367    =/= wne 2577   A.wral 2732   E.wrex 2733   _Vcvv 3034    C_ wss 3389   U.cuni 4163   U_ciun 4243   class class class wbr 4367    |-> cmpt 4425   Ord word 4791   Oncon0 4792   Lim wlim 4793   suc csuc 4794   dom cdm 4913   ran crn 4914    Fn wfn 5491   -onto->wfo 5494   ` cfv 5496    ~<_ cdom 7433    ~< csdm 7434   cardccrd 8229   cfccf 8231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-recs 6960  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-card 8233  df-cf 8235  df-acn 8236
This theorem is referenced by:  tskuni  9072
  Copyright terms: Public domain W3C validator