MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinufil Structured version   Unicode version

Theorem cfinufil 19523
Description: An ultrafilter is free iff it contains the Fréchet filter cfinfil 19488 as a subset. (Contributed by NM, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinufil  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  <->  { x  e.  ~P X  |  ( X  \  x )  e.  Fin }  C_  F ) )
Distinct variable groups:    x, F    x, X

Proof of Theorem cfinufil
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elpwi 3890 . . . . 5  |-  ( x  e.  ~P X  ->  x  C_  X )
2 ufilb 19501 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  ( -.  x  e.  F  <->  ( X  \  x )  e.  F ) )
32adantr 465 . . . . . . . . 9  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( -.  x  e.  F  <->  ( X  \  x )  e.  F
) )
4 ufilfil 19499 . . . . . . . . . . . 12  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
54adantr 465 . . . . . . . . . . 11  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  F  e.  ( Fil `  X
) )
6 filfinnfr 19472 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  X )  /\  ( X  \  x )  e.  F  /\  ( X 
\  x )  e. 
Fin )  ->  |^| F  =/=  (/) )
763exp 1186 . . . . . . . . . . . 12  |-  ( F  e.  ( Fil `  X
)  ->  ( ( X  \  x )  e.  F  ->  ( ( X  \  x )  e. 
Fin  ->  |^| F  =/=  (/) ) ) )
87com23 78 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( ( X  \  x )  e. 
Fin  ->  ( ( X 
\  x )  e.  F  ->  |^| F  =/=  (/) ) ) )
95, 8syl 16 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( X  \  x
)  e.  Fin  ->  ( ( X  \  x
)  e.  F  ->  |^| F  =/=  (/) ) ) )
109imp 429 . . . . . . . . 9  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( ( X 
\  x )  e.  F  ->  |^| F  =/=  (/) ) )
113, 10sylbid 215 . . . . . . . 8  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( -.  x  e.  F  ->  |^| F  =/=  (/) ) )
1211necon4bd 2697 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  x  C_  X )  /\  ( X  \  x )  e.  Fin )  ->  ( |^| F  =  (/)  ->  x  e.  F ) )
1312ex 434 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( X  \  x
)  e.  Fin  ->  (
|^| F  =  (/)  ->  x  e.  F ) ) )
1413com23 78 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  ( |^| F  =  (/)  ->  (
( X  \  x
)  e.  Fin  ->  x  e.  F ) ) )
151, 14sylan2 474 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  ~P X )  -> 
( |^| F  =  (/)  ->  ( ( X  \  x )  e.  Fin  ->  x  e.  F ) ) )
1615ralrimdva 2827 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  ->  A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F ) ) )
174adantr 465 . . . . . . . . . . . 12  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  ->  F  e.  ( Fil `  X ) )
18 uffixsn 19520 . . . . . . . . . . . 12  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  ->  { y }  e.  F )
19 filelss 19447 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  {
y }  e.  F
)  ->  { y }  C_  X )
2017, 18, 19syl2anc 661 . . . . . . . . . . 11  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  ->  { y }  C_  X )
21 dfss4 3605 . . . . . . . . . . 11  |-  ( { y }  C_  X  <->  ( X  \  ( X 
\  { y } ) )  =  {
y } )
2220, 21sylib 196 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( X  \  ( X  \  { y } ) )  =  {
y } )
23 snfi 7411 . . . . . . . . . 10  |-  { y }  e.  Fin
2422, 23syl6eqel 2531 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( X  \  ( X  \  { y } ) )  e.  Fin )
25 difss 3504 . . . . . . . . . . 11  |-  ( X 
\  { y } )  C_  X
26 filtop 19450 . . . . . . . . . . . 12  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
27 elpw2g 4476 . . . . . . . . . . . 12  |-  ( X  e.  F  ->  (
( X  \  {
y } )  e. 
~P X  <->  ( X  \  { y } ) 
C_  X ) )
2817, 26, 273syl 20 . . . . . . . . . . 11  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( ( X  \  { y } )  e.  ~P X  <->  ( X  \  { y } ) 
C_  X ) )
2925, 28mpbiri 233 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( X  \  {
y } )  e. 
~P X )
30 difeq2 3489 . . . . . . . . . . . . 13  |-  ( x  =  ( X  \  { y } )  ->  ( X  \  x )  =  ( X  \  ( X 
\  { y } ) ) )
3130eleq1d 2509 . . . . . . . . . . . 12  |-  ( x  =  ( X  \  { y } )  ->  ( ( X 
\  x )  e. 
Fin 
<->  ( X  \  ( X  \  { y } ) )  e.  Fin ) )
32 eleq1 2503 . . . . . . . . . . . 12  |-  ( x  =  ( X  \  { y } )  ->  ( x  e.  F  <->  ( X  \  { y } )  e.  F ) )
3331, 32imbi12d 320 . . . . . . . . . . 11  |-  ( x  =  ( X  \  { y } )  ->  ( ( ( X  \  x )  e.  Fin  ->  x  e.  F )  <->  ( ( X  \  ( X  \  { y } ) )  e.  Fin  ->  ( X  \  { y } )  e.  F
) ) )
3433rspcv 3090 . . . . . . . . . 10  |-  ( ( X  \  { y } )  e.  ~P X  ->  ( A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  (
( X  \  ( X  \  { y } ) )  e.  Fin  ->  ( X  \  {
y } )  e.  F ) ) )
3529, 34syl 16 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( A. x  e. 
~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  (
( X  \  ( X  \  { y } ) )  e.  Fin  ->  ( X  \  {
y } )  e.  F ) ) )
3624, 35mpid 41 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( A. x  e. 
~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  ( X  \  { y } )  e.  F ) )
37 ufilb 19501 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  {
y }  C_  X
)  ->  ( -.  { y }  e.  F  <->  ( X  \  { y } )  e.  F
) )
3820, 37syldan 470 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( -.  { y }  e.  F  <->  ( X  \  { y } )  e.  F ) )
3918pm2.24d 143 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( -.  { y }  e.  F  ->  -.  y  e.  |^| F
) )
4038, 39sylbird 235 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( ( X  \  { y } )  e.  F  ->  -.  y  e.  |^| F ) )
4136, 40syld 44 . . . . . . 7  |-  ( ( F  e.  ( UFil `  X )  /\  y  e.  |^| F )  -> 
( A. x  e. 
~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  -.  y  e.  |^| F ) )
4241impancom 440 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F ) )  ->  ( y  e.  |^| F  ->  -.  y  e.  |^| F ) )
4342pm2.01d 169 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F ) )  ->  -.  y  e.  |^| F )
4443eq0rdv 3693 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F ) )  ->  |^| F  =  (/) )
4544ex 434 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( A. x  e.  ~P  X
( ( X  \  x )  e.  Fin  ->  x  e.  F )  ->  |^| F  =  (/) ) )
4616, 45impbid 191 . 2  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  <->  A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F ) ) )
47 rabss 3450 . 2  |-  ( { x  e.  ~P X  |  ( X  \  x )  e.  Fin } 
C_  F  <->  A. x  e.  ~P  X ( ( X  \  x )  e.  Fin  ->  x  e.  F ) )
4846, 47syl6bbr 263 1  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =  (/)  <->  { x  e.  ~P X  |  ( X  \  x )  e.  Fin }  C_  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736   {crab 2740    \ cdif 3346    C_ wss 3349   (/)c0 3658   ~Pcpw 3881   {csn 3898   |^|cint 4149   ` cfv 5439   Fincfn 7331   Filcfil 19440   UFilcufil 19494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1o 6941  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fbas 17836  df-fg 17837  df-fil 19441  df-ufil 19496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator