MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinfil Unicode version

Theorem cfinfil 17878
Description: Relative complements of the finite parts of an infinite set is a filter. When  A  =  NN the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinfil  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    V( x)

Proof of Theorem cfinfil
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3419 . . . . . 6  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
21eleq1d 2470 . . . . 5  |-  ( x  =  y  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
32elrab 3052 . . . 4  |-  ( y  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( y  e.  ~P X  /\  ( A  \  y )  e. 
Fin ) )
4 vex 2919 . . . . . 6  |-  y  e. 
_V
54elpw 3765 . . . . 5  |-  ( y  e.  ~P X  <->  y  C_  X )
65anbi1i 677 . . . 4  |-  ( ( y  e.  ~P X  /\  ( A  \  y
)  e.  Fin )  <->  ( y  C_  X  /\  ( A  \  y
)  e.  Fin )
)
73, 6bitri 241 . . 3  |-  ( y  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( y  C_  X  /\  ( A 
\  y )  e. 
Fin ) )
87a1i 11 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  ( y  e.  {
x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <-> 
( y  C_  X  /\  ( A  \  y
)  e.  Fin )
) )
9 elex 2924 . . 3  |-  ( X  e.  V  ->  X  e.  _V )
1093ad2ant1 978 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  X  e.  _V )
11 ssdif0 3646 . . . . 5  |-  ( A 
C_  X  <->  ( A  \  X )  =  (/) )
12 0fin 7295 . . . . . 6  |-  (/)  e.  Fin
13 eleq1 2464 . . . . . 6  |-  ( ( A  \  X )  =  (/)  ->  ( ( A  \  X )  e.  Fin  <->  (/)  e.  Fin ) )
1412, 13mpbiri 225 . . . . 5  |-  ( ( A  \  X )  =  (/)  ->  ( A 
\  X )  e. 
Fin )
1511, 14sylbi 188 . . . 4  |-  ( A 
C_  X  ->  ( A  \  X )  e. 
Fin )
16 difeq2 3419 . . . . . . 7  |-  ( y  =  X  ->  ( A  \  y )  =  ( A  \  X
) )
1716eleq1d 2470 . . . . . 6  |-  ( y  =  X  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  X )  e.  Fin ) )
1817sbcieg 3153 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  y ]. ( A  \  y
)  e.  Fin  <->  ( A  \  X )  e.  Fin ) )
1918biimpar 472 . . . 4  |-  ( ( X  e.  V  /\  ( A  \  X )  e.  Fin )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
2015, 19sylan2 461 . . 3  |-  ( ( X  e.  V  /\  A  C_  X )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
21203adant3 977 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
22 0ex 4299 . . . . . . 7  |-  (/)  e.  _V
23 difeq2 3419 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A 
\  y )  =  ( A  \  (/) ) )
2423eleq1d 2470 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A  \  y )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
2522, 24sbcie 3155 . . . . . 6  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  (/) )  e. 
Fin )
26 dif0 3658 . . . . . . 7  |-  ( A 
\  (/) )  =  A
2726eleq1i 2467 . . . . . 6  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2825, 27bitri 241 . . . . 5  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin 
<->  A  e.  Fin )
2928biimpi 187 . . . 4  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin  ->  A  e.  Fin )
3029con3i 129 . . 3  |-  ( -.  A  e.  Fin  ->  -. 
[. (/)  /  y ]. ( A  \  y
)  e.  Fin )
31303ad2ant3 980 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  -.  [. (/)  /  y ]. ( A  \  y
)  e.  Fin )
32 sscon 3441 . . . . 5  |-  ( w 
C_  z  ->  ( A  \  z )  C_  ( A  \  w
) )
33 ssfi 7288 . . . . . 6  |-  ( ( ( A  \  w
)  e.  Fin  /\  ( A  \  z
)  C_  ( A  \  w ) )  -> 
( A  \  z
)  e.  Fin )
3433expcom 425 . . . . 5  |-  ( ( A  \  z ) 
C_  ( A  \  w )  ->  (
( A  \  w
)  e.  Fin  ->  ( A  \  z )  e.  Fin ) )
3532, 34syl 16 . . . 4  |-  ( w 
C_  z  ->  (
( A  \  w
)  e.  Fin  ->  ( A  \  z )  e.  Fin ) )
36 vex 2919 . . . . 5  |-  w  e. 
_V
37 difeq2 3419 . . . . . 6  |-  ( y  =  w  ->  ( A  \  y )  =  ( A  \  w
) )
3837eleq1d 2470 . . . . 5  |-  ( y  =  w  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  w )  e.  Fin ) )
3936, 38sbcie 3155 . . . 4  |-  ( [. w  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  w
)  e.  Fin )
40 vex 2919 . . . . 5  |-  z  e. 
_V
41 difeq2 3419 . . . . . 6  |-  ( y  =  z  ->  ( A  \  y )  =  ( A  \  z
) )
4241eleq1d 2470 . . . . 5  |-  ( y  =  z  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  z )  e.  Fin ) )
4340, 42sbcie 3155 . . . 4  |-  ( [. z  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  z
)  e.  Fin )
4435, 39, 433imtr4g 262 . . 3  |-  ( w 
C_  z  ->  ( [. w  /  y ]. ( A  \  y
)  e.  Fin  ->  [. z  /  y ]. ( A  \  y
)  e.  Fin )
)
45443ad2ant3 980 . 2  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  z )  ->  ( [. w  /  y ]. ( A  \  y )  e. 
Fin  ->  [. z  /  y ]. ( A  \  y
)  e.  Fin )
)
46 difindi 3555 . . . . 5  |-  ( A 
\  ( z  i^i  w ) )  =  ( ( A  \ 
z )  u.  ( A  \  w ) )
47 unfi 7333 . . . . 5  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )  ->  ( ( A  \ 
z )  u.  ( A  \  w ) )  e.  Fin )
4846, 47syl5eqel 2488 . . . 4  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )  ->  ( A  \  (
z  i^i  w )
)  e.  Fin )
4948a1i 11 . . 3  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  X )  ->  ( ( ( A  \  z )  e.  Fin  /\  ( A  \  w )  e. 
Fin )  ->  ( A  \  ( z  i^i  w ) )  e. 
Fin ) )
5043, 39anbi12i 679 . . 3  |-  ( (
[. z  /  y ]. ( A  \  y
)  e.  Fin  /\  [. w  /  y ]. ( A  \  y
)  e.  Fin )  <->  ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )
)
5140inex1 4304 . . . 4  |-  ( z  i^i  w )  e. 
_V
52 difeq2 3419 . . . . 5  |-  ( y  =  ( z  i^i  w )  ->  ( A  \  y )  =  ( A  \  (
z  i^i  w )
) )
5352eleq1d 2470 . . . 4  |-  ( y  =  ( z  i^i  w )  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  ( z  i^i  w
) )  e.  Fin ) )
5451, 53sbcie 3155 . . 3  |-  ( [. ( z  i^i  w
)  /  y ]. ( A  \  y
)  e.  Fin  <->  ( A  \  ( z  i^i  w
) )  e.  Fin )
5549, 50, 543imtr4g 262 . 2  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  X )  ->  ( ( [. z  /  y ]. ( A  \  y )  e. 
Fin  /\  [. w  / 
y ]. ( A  \ 
y )  e.  Fin )  ->  [. ( z  i^i  w )  /  y ]. ( A  \  y
)  e.  Fin )
)
568, 10, 21, 31, 45, 55isfild 17843 1  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {crab 2670   _Vcvv 2916   [.wsbc 3121    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   ` cfv 5413   Fincfn 7068   Filcfil 17830
This theorem is referenced by:  ufinffr  17914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-oadd 6687  df-er 6864  df-en 7069  df-fin 7072  df-fbas 16654  df-fil 17831
  Copyright terms: Public domain W3C validator