MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinfil Structured version   Unicode version

Theorem cfinfil 20894
Description: Relative complements of the finite parts of an infinite set is a filter. When  A  =  NN the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinfil  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    V( x)

Proof of Theorem cfinfil
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3577 . . . . . 6  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
21eleq1d 2491 . . . . 5  |-  ( x  =  y  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
32elrab 3229 . . . 4  |-  ( y  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( y  e.  ~P X  /\  ( A  \  y )  e. 
Fin ) )
4 selpw 3986 . . . . 5  |-  ( y  e.  ~P X  <->  y  C_  X )
54anbi1i 699 . . . 4  |-  ( ( y  e.  ~P X  /\  ( A  \  y
)  e.  Fin )  <->  ( y  C_  X  /\  ( A  \  y
)  e.  Fin )
)
63, 5bitri 252 . . 3  |-  ( y  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( y  C_  X  /\  ( A 
\  y )  e. 
Fin ) )
76a1i 11 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  ( y  e.  {
x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <-> 
( y  C_  X  /\  ( A  \  y
)  e.  Fin )
) )
8 elex 3090 . . 3  |-  ( X  e.  V  ->  X  e.  _V )
983ad2ant1 1026 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  X  e.  _V )
10 ssdif0 3851 . . . . 5  |-  ( A 
C_  X  <->  ( A  \  X )  =  (/) )
11 0fin 7801 . . . . . 6  |-  (/)  e.  Fin
12 eleq1 2494 . . . . . 6  |-  ( ( A  \  X )  =  (/)  ->  ( ( A  \  X )  e.  Fin  <->  (/)  e.  Fin ) )
1311, 12mpbiri 236 . . . . 5  |-  ( ( A  \  X )  =  (/)  ->  ( A 
\  X )  e. 
Fin )
1410, 13sylbi 198 . . . 4  |-  ( A 
C_  X  ->  ( A  \  X )  e. 
Fin )
15 difeq2 3577 . . . . . . 7  |-  ( y  =  X  ->  ( A  \  y )  =  ( A  \  X
) )
1615eleq1d 2491 . . . . . 6  |-  ( y  =  X  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  X )  e.  Fin ) )
1716sbcieg 3332 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  y ]. ( A  \  y
)  e.  Fin  <->  ( A  \  X )  e.  Fin ) )
1817biimpar 487 . . . 4  |-  ( ( X  e.  V  /\  ( A  \  X )  e.  Fin )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
1914, 18sylan2 476 . . 3  |-  ( ( X  e.  V  /\  A  C_  X )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
20193adant3 1025 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
21 0ex 4552 . . . . . 6  |-  (/)  e.  _V
22 difeq2 3577 . . . . . . 7  |-  ( y  =  (/)  ->  ( A 
\  y )  =  ( A  \  (/) ) )
2322eleq1d 2491 . . . . . 6  |-  ( y  =  (/)  ->  ( ( A  \  y )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
2421, 23sbcie 3334 . . . . 5  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  (/) )  e. 
Fin )
25 dif0 3865 . . . . . 6  |-  ( A 
\  (/) )  =  A
2625eleq1i 2499 . . . . 5  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2724, 26sylbb 200 . . . 4  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin  ->  A  e.  Fin )
2827con3i 140 . . 3  |-  ( -.  A  e.  Fin  ->  -. 
[. (/)  /  y ]. ( A  \  y
)  e.  Fin )
29283ad2ant3 1028 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  -.  [. (/)  /  y ]. ( A  \  y
)  e.  Fin )
30 sscon 3599 . . . . 5  |-  ( w 
C_  z  ->  ( A  \  z )  C_  ( A  \  w
) )
31 ssfi 7794 . . . . . 6  |-  ( ( ( A  \  w
)  e.  Fin  /\  ( A  \  z
)  C_  ( A  \  w ) )  -> 
( A  \  z
)  e.  Fin )
3231expcom 436 . . . . 5  |-  ( ( A  \  z ) 
C_  ( A  \  w )  ->  (
( A  \  w
)  e.  Fin  ->  ( A  \  z )  e.  Fin ) )
3330, 32syl 17 . . . 4  |-  ( w 
C_  z  ->  (
( A  \  w
)  e.  Fin  ->  ( A  \  z )  e.  Fin ) )
34 vex 3084 . . . . 5  |-  w  e. 
_V
35 difeq2 3577 . . . . . 6  |-  ( y  =  w  ->  ( A  \  y )  =  ( A  \  w
) )
3635eleq1d 2491 . . . . 5  |-  ( y  =  w  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  w )  e.  Fin ) )
3734, 36sbcie 3334 . . . 4  |-  ( [. w  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  w
)  e.  Fin )
38 vex 3084 . . . . 5  |-  z  e. 
_V
39 difeq2 3577 . . . . . 6  |-  ( y  =  z  ->  ( A  \  y )  =  ( A  \  z
) )
4039eleq1d 2491 . . . . 5  |-  ( y  =  z  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  z )  e.  Fin ) )
4138, 40sbcie 3334 . . . 4  |-  ( [. z  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  z
)  e.  Fin )
4233, 37, 413imtr4g 273 . . 3  |-  ( w 
C_  z  ->  ( [. w  /  y ]. ( A  \  y
)  e.  Fin  ->  [. z  /  y ]. ( A  \  y
)  e.  Fin )
)
43423ad2ant3 1028 . 2  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  z )  ->  ( [. w  /  y ]. ( A  \  y )  e. 
Fin  ->  [. z  /  y ]. ( A  \  y
)  e.  Fin )
)
44 difindi 3727 . . . . 5  |-  ( A 
\  ( z  i^i  w ) )  =  ( ( A  \ 
z )  u.  ( A  \  w ) )
45 unfi 7840 . . . . 5  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )  ->  ( ( A  \ 
z )  u.  ( A  \  w ) )  e.  Fin )
4644, 45syl5eqel 2514 . . . 4  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )  ->  ( A  \  (
z  i^i  w )
)  e.  Fin )
4746a1i 11 . . 3  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  X )  ->  ( ( ( A  \  z )  e.  Fin  /\  ( A  \  w )  e. 
Fin )  ->  ( A  \  ( z  i^i  w ) )  e. 
Fin ) )
4841, 37anbi12i 701 . . 3  |-  ( (
[. z  /  y ]. ( A  \  y
)  e.  Fin  /\  [. w  /  y ]. ( A  \  y
)  e.  Fin )  <->  ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )
)
4938inex1 4561 . . . 4  |-  ( z  i^i  w )  e. 
_V
50 difeq2 3577 . . . . 5  |-  ( y  =  ( z  i^i  w )  ->  ( A  \  y )  =  ( A  \  (
z  i^i  w )
) )
5150eleq1d 2491 . . . 4  |-  ( y  =  ( z  i^i  w )  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  ( z  i^i  w
) )  e.  Fin ) )
5249, 51sbcie 3334 . . 3  |-  ( [. ( z  i^i  w
)  /  y ]. ( A  \  y
)  e.  Fin  <->  ( A  \  ( z  i^i  w
) )  e.  Fin )
5347, 48, 523imtr4g 273 . 2  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  X )  ->  ( ( [. z  /  y ]. ( A  \  y )  e. 
Fin  /\  [. w  / 
y ]. ( A  \ 
y )  e.  Fin )  ->  [. ( z  i^i  w )  /  y ]. ( A  \  y
)  e.  Fin )
)
547, 9, 20, 29, 43, 53isfild 20859 1  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   {crab 2779   _Vcvv 3081   [.wsbc 3299    \ cdif 3433    u. cun 3434    i^i cin 3435    C_ wss 3436   (/)c0 3761   ~Pcpw 3979   ` cfv 5597   Fincfn 7573   Filcfil 20846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-oadd 7190  df-er 7367  df-en 7574  df-fin 7577  df-fbas 18954  df-fil 20847
This theorem is referenced by:  ufinffr  20930
  Copyright terms: Public domain W3C validator