MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil Structured version   Unicode version

Theorem cfilucfil 21498
Description: Given a metric  D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 22121. (Contributed by Thierry Arnoux, 29-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
cfilucfil  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
Distinct variable groups:    D, a    X, a    F, a, x    x, D, y    x, F, y   
x, X, y, a   
y, D    C, a, x, y

Proof of Theorem cfilucfil
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . . 5  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
21metust 21497 . . . 4  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X ) )
3 cfilufbas 21228 . . . 4  |-  ( ( ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  C  e.  ( fBas `  X
) )
42, 3sylan 473 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  C  e.  ( fBas `  X
) )
5 simpllr 767 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  D  e.  (PsMet `  X )
)
6 psmetf 21246 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
7 ffun 5739 . . . . . 6  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
85, 6, 73syl 18 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  Fun  D
)
92ad2antrr 730 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( ( X  X.  X )
filGen F )  e.  (UnifOn `  X ) )
10 simplr 760 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )
111metustfbas 21496 . . . . . . . 8  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
1211ad2antrr 730 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
13 cnvimass 5199 . . . . . . . 8  |-  ( `' D " ( 0 [,) x ) ) 
C_  dom  D
14 fdm 5741 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
155, 6, 143syl 18 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  dom  D  =  ( X  X.  X ) )
1613, 15syl5sseq 3509 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) x ) ) 
C_  ( X  X.  X ) )
17 simpr 462 . . . . . . . . . . 11  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
1817rphalfcld 11342 . . . . . . . . . 10  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
19 eqidd 2421 . . . . . . . . . 10  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )
20 oveq2 6304 . . . . . . . . . . . . 13  |-  ( a  =  ( x  / 
2 )  ->  (
0 [,) a )  =  ( 0 [,) ( x  /  2
) ) )
2120imaeq2d 5179 . . . . . . . . . . . 12  |-  ( a  =  ( x  / 
2 )  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )
2221eqeq2d 2434 . . . . . . . . . . 11  |-  ( a  =  ( x  / 
2 )  ->  (
( `' D "
( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) )  <-> 
( `' D "
( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) ) )
2322rspcev 3179 . . . . . . . . . 10  |-  ( ( ( x  /  2
)  e.  RR+  /\  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) a
) ) )
2418, 19, 23syl2anc 665 . . . . . . . . 9  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) ) )
251metustel 21489 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  ( ( `' D " ( 0 [,) ( x  / 
2 ) ) )  e.  F  <->  E. a  e.  RR+  ( `' D " ( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) ) ) )
2625biimpar 487 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  E. a  e.  RR+  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) a
) ) )  -> 
( `' D "
( 0 [,) (
x  /  2 ) ) )  e.  F
)
275, 24, 26syl2anc 665 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  e.  F )
28 0xr 9676 . . . . . . . . . . 11  |-  0  e.  RR*
2928a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  e. 
RR* )
30 rpxr 11298 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  x  e. 
RR* )
31 0le0 10688 . . . . . . . . . . 11  |-  0  <_  0
3231a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  <_ 
0 )
33 rpre 11297 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
3433rehalfcld 10848 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR )
35 rphalflt 11318 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  < 
x )
3634, 33, 35ltled 9772 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  <_  x )
37 icossico 11693 . . . . . . . . . 10  |-  ( ( ( 0  e.  RR*  /\  x  e.  RR* )  /\  ( 0  <_  0  /\  ( x  /  2
)  <_  x )
)  ->  ( 0 [,) ( x  / 
2 ) )  C_  ( 0 [,) x
) )
3829, 30, 32, 36, 37syl22anc 1265 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 0 [,) ( x  / 
2 ) )  C_  ( 0 [,) x
) )
39 imass2 5215 . . . . . . . . 9  |-  ( ( 0 [,) ( x  /  2 ) ) 
C_  ( 0 [,) x )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) 
C_  ( `' D " ( 0 [,) x
) ) )
4017, 38, 393syl 18 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) 
C_  ( `' D " ( 0 [,) x
) ) )
41 sseq1 3482 . . . . . . . . 9  |-  ( w  =  ( `' D " ( 0 [,) (
x  /  2 ) ) )  ->  (
w  C_  ( `' D " ( 0 [,) x ) )  <->  ( `' D " ( 0 [,) ( x  /  2
) ) )  C_  ( `' D " ( 0 [,) x ) ) ) )
4241rspcev 3179 . . . . . . . 8  |-  ( ( ( `' D "
( 0 [,) (
x  /  2 ) ) )  e.  F  /\  ( `' D "
( 0 [,) (
x  /  2 ) ) )  C_  ( `' D " ( 0 [,) x ) ) )  ->  E. w  e.  F  w  C_  ( `' D " ( 0 [,) x ) ) )
4327, 40, 42syl2anc 665 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. w  e.  F  w  C_  ( `' D " ( 0 [,) x ) ) )
44 elfg 20810 . . . . . . . 8  |-  ( F  e.  ( fBas `  ( X  X.  X ) )  ->  ( ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F )  <->  ( ( `' D " ( 0 [,) x ) ) 
C_  ( X  X.  X )  /\  E. w  e.  F  w  C_  ( `' D "
( 0 [,) x
) ) ) ) )
4544biimpar 487 . . . . . . 7  |-  ( ( F  e.  ( fBas `  ( X  X.  X
) )  /\  (
( `' D "
( 0 [,) x
) )  C_  ( X  X.  X )  /\  E. w  e.  F  w 
C_  ( `' D " ( 0 [,) x
) ) ) )  ->  ( `' D " ( 0 [,) x
) )  e.  ( ( X  X.  X
) filGen F ) )
4612, 16, 43, 45syl12anc 1262 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F ) )
47 cfiluexsm 21229 . . . . . 6  |-  ( ( ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  /\  ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F ) )  ->  E. y  e.  C  ( y  X.  y )  C_  ( `' D " ( 0 [,) x ) ) )
489, 10, 46, 47syl3anc 1264 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. y  e.  C  ( y  X.  y )  C_  ( `' D " ( 0 [,) x ) ) )
49 funimass2 5666 . . . . . . 7  |-  ( ( Fun  D  /\  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) ) )  -> 
( D " (
y  X.  y ) )  C_  ( 0 [,) x ) )
5049ex 435 . . . . . 6  |-  ( Fun 
D  ->  ( (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) )  ->  ( D " ( y  X.  y ) )  C_  ( 0 [,) x
) ) )
5150reximdv 2897 . . . . 5  |-  ( Fun 
D  ->  ( E. y  e.  C  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) )  ->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
528, 48, 51sylc 62 . . . 4  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) )
5352ralrimiva 2837 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) )
544, 53jca 534 . 2  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
55 simprl 762 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  C  e.  ( fBas `  X
) )
56 simp-4r 775 . . . . . . . . 9  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( C  e.  (
fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) ) )
5756simprd 464 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) )
58 simplr 760 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
a  e.  RR+ )
59 oveq2 6304 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
0 [,) x )  =  ( 0 [,) a ) )
6059sseq2d 3489 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  ( D " ( y  X.  y
) )  C_  (
0 [,) a ) ) )
6160rexbidv 2937 . . . . . . . . 9  |-  ( x  =  a  ->  ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )  <->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) a ) ) )
6261rspccv 3176 . . . . . . . 8  |-  ( A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x )  ->  ( a  e.  RR+  ->  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a ) ) )
6357, 58, 62sylc 62 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a ) )
64 nfv 1751 . . . . . . . . . . . 12  |-  F/ y ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)
65 nfv 1751 . . . . . . . . . . . . 13  |-  F/ y  C  e.  ( fBas `  X )
66 nfcv 2582 . . . . . . . . . . . . . 14  |-  F/_ y RR+
67 nfre1 2884 . . . . . . . . . . . . . 14  |-  F/ y E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )
6866, 67nfral 2809 . . . . . . . . . . . . 13  |-  F/ y A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )
6965, 68nfan 1983 . . . . . . . . . . . 12  |-  F/ y ( C  e.  (
fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) )
7064, 69nfan 1983 . . . . . . . . . . 11  |-  F/ y ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
71 nfv 1751 . . . . . . . . . . 11  |-  F/ y  v  e.  ( ( X  X.  X )
filGen F )
7270, 71nfan 1983 . . . . . . . . . 10  |-  F/ y ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )
73 nfv 1751 . . . . . . . . . 10  |-  F/ y  a  e.  RR+
7472, 73nfan 1983 . . . . . . . . 9  |-  F/ y ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )
75 nfv 1751 . . . . . . . . 9  |-  F/ y ( `' D "
( 0 [,) a
) )  C_  v
7674, 75nfan 1983 . . . . . . . 8  |-  F/ y ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )
7755ad4antr 736 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  C  e.  ( fBas `  X ) )
78 fbelss 20772 . . . . . . . . . . . 12  |-  ( ( C  e.  ( fBas `  X )  /\  y  e.  C )  ->  y  C_  X )
7977, 78sylancom 671 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  y  C_  X )
80 xpss12 4951 . . . . . . . . . . 11  |-  ( ( y  C_  X  /\  y  C_  X )  -> 
( y  X.  y
)  C_  ( X  X.  X ) )
8179, 79, 80syl2anc 665 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  ( y  X.  y
)  C_  ( X  X.  X ) )
82 simp-6r 779 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  D  e.  (PsMet `  X ) )
8382, 6, 143syl 18 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  dom  D  =  ( X  X.  X ) )
8481, 83sseqtr4d 3498 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  ( y  X.  y
)  C_  dom  D )
8584ex 435 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( y  e.  C  ->  ( y  X.  y
)  C_  dom  D ) )
8676, 85ralrimi 2823 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  A. y  e.  C  ( y  X.  y
)  C_  dom  D )
87 r19.29r 2962 . . . . . . . 8  |-  ( ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  /\  A. y  e.  C  (
y  X.  y ) 
C_  dom  D )  ->  E. y  e.  C  ( ( D "
( y  X.  y
) )  C_  (
0 [,) a )  /\  ( y  X.  y )  C_  dom  D ) )
88 dfss1 3664 . . . . . . . . . . . . 13  |-  ( ( y  X.  y ) 
C_  dom  D  <->  ( dom  D  i^i  ( y  X.  y ) )  =  ( y  X.  y
) )
8988biimpi 197 . . . . . . . . . . . 12  |-  ( ( y  X.  y ) 
C_  dom  D  ->  ( dom  D  i^i  (
y  X.  y ) )  =  ( y  X.  y ) )
9089adantl 467 . . . . . . . . . . 11  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( dom  D  i^i  ( y  X.  y
) )  =  ( y  X.  y ) )
91 dminss 5261 . . . . . . . . . . 11  |-  ( dom 
D  i^i  ( y  X.  y ) )  C_  ( `' D " ( D
" ( y  X.  y ) ) )
9290, 91syl6eqssr 3512 . . . . . . . . . 10  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( y  X.  y )  C_  ( `' D " ( D
" ( y  X.  y ) ) ) )
93 imass2 5215 . . . . . . . . . . 11  |-  ( ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  ->  ( `' D " ( D
" ( y  X.  y ) ) ) 
C_  ( `' D " ( 0 [,) a
) ) )
9493adantr 466 . . . . . . . . . 10  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( `' D " ( D " (
y  X.  y ) ) )  C_  ( `' D " ( 0 [,) a ) ) )
9592, 94sstrd 3471 . . . . . . . . 9  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( y  X.  y )  C_  ( `' D " ( 0 [,) a ) ) )
9695reximi 2891 . . . . . . . 8  |-  ( E. y  e.  C  ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
9787, 96syl 17 . . . . . . 7  |-  ( ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  /\  A. y  e.  C  (
y  X.  y ) 
C_  dom  D )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
9863, 86, 97syl2anc 665 . . . . . 6  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
99 r19.41v 2978 . . . . . . 7  |-  ( E. y  e.  C  ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  <->  ( E. y  e.  C  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) a
) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v ) )
100 sstr 3469 . . . . . . . 8  |-  ( ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( y  X.  y
)  C_  v )
101100reximi 2891 . . . . . . 7  |-  ( E. y  e.  C  ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
10299, 101sylbir 216 . . . . . 6  |-  ( ( E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
10398, 102sylancom 671 . . . . 5  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
104 simp-5r 777 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  D  e.  (PsMet `  X )
)
105 simplr 760 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  w  e.  F )
1061metustel 21489 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  ( w  e.  F  <->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) ) )
107106biimpa 486 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  w  e.  F )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
108104, 105, 107syl2anc 665 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
109 r19.41v 2978 . . . . . . . 8  |-  ( E. a  e.  RR+  (
w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  <->  ( E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
) )
110 sseq1 3482 . . . . . . . . . 10  |-  ( w  =  ( `' D " ( 0 [,) a
) )  ->  (
w  C_  v  <->  ( `' D " ( 0 [,) a ) )  C_  v ) )
111110biimpa 486 . . . . . . . . 9  |-  ( ( w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  ->  ( `' D " ( 0 [,) a ) )  C_  v )
112111reximi 2891 . . . . . . . 8  |-  ( E. a  e.  RR+  (
w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
113109, 112sylbir 216 . . . . . . 7  |-  ( ( E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a ) ) 
C_  v )
114108, 113sylancom 671 . . . . . 6  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
11511ad2antrr 730 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
116 elfg 20810 . . . . . . . . 9  |-  ( F  e.  ( fBas `  ( X  X.  X ) )  ->  ( v  e.  ( ( X  X.  X ) filGen F )  <-> 
( v  C_  ( X  X.  X )  /\  E. w  e.  F  w 
C_  v ) ) )
117116biimpa 486 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  ( X  X.  X
) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  ( v  C_  ( X  X.  X
)  /\  E. w  e.  F  w  C_  v
) )
118115, 117sylancom 671 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  ( v  C_  ( X  X.  X
)  /\  E. w  e.  F  w  C_  v
) )
119118simprd 464 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. w  e.  F  w  C_  v
)
120114, 119r19.29a 2968 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
121103, 120r19.29a 2968 . . . 4  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. y  e.  C  ( y  X.  y )  C_  v
)
122121ralrimiva 2837 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  A. v  e.  ( ( X  X.  X ) filGen F ) E. y  e.  C  ( y  X.  y
)  C_  v )
1232adantr 466 . . . 4  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  (
( X  X.  X
) filGen F )  e.  (UnifOn `  X )
)
124 iscfilu 21227 . . . 4  |-  ( ( ( X  X.  X
) filGen F )  e.  (UnifOn `  X )  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. v  e.  ( ( X  X.  X ) filGen F ) E. y  e.  C  ( y  X.  y
)  C_  v )
) )
125123, 124syl 17 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  ( C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) )  <-> 
( C  e.  (
fBas `  X )  /\  A. v  e.  ( ( X  X.  X
) filGen F ) E. y  e.  C  ( y  X.  y ) 
C_  v ) ) )
12655, 122, 125mpbir2and 930 . 2  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )
12754, 126impbida 840 1  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867    =/= wne 2616   A.wral 2773   E.wrex 2774    i^i cin 3432    C_ wss 3433   (/)c0 3758   class class class wbr 4417    |-> cmpt 4475    X. cxp 4843   `'ccnv 4844   dom cdm 4845   ran crn 4846   "cima 4848   Fun wfun 5586   -->wf 5588   ` cfv 5592  (class class class)co 6296   0cc0 9528   RR*cxr 9663    <_ cle 9665    / cdiv 10258   2c2 10648   RR+crp 11291   [,)cico 11626  PsMetcpsmet 18882   fBascfbas 18886   filGencfg 18887  UnifOncust 21138  CauFiluccfilu 21225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-po 4766  df-so 4767  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6798  df-2nd 6799  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-2 10657  df-rp 11292  df-xneg 11398  df-xadd 11399  df-xmul 11400  df-ico 11630  df-psmet 18890  df-fbas 18895  df-fg 18896  df-fil 20785  df-ust 21139  df-cfilu 21226
This theorem is referenced by:  cfilucfil2  21500
  Copyright terms: Public domain W3C validator