MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfcls Structured version   Unicode version

Theorem cfilfcls 21476
Description: Similar to ultrafilters (uffclsflim 20295), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cfilfcls.1  |-  J  =  ( MetOpen `  D )
cfilfcls.2  |-  X  =  dom  dom  D
Assertion
Ref Expression
cfilfcls  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fClus  F )  =  ( J  fLim  F )
)

Proof of Theorem cfilfcls
Dummy variables  x  y  z  f  r 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . . . . 8  |-  U. J  =  U. J
21fclselbas 20280 . . . . . . 7  |-  ( x  e.  ( J  fClus  F )  ->  x  e.  U. J )
32adantl 466 . . . . . 6  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  x  e.  U. J )
4 df-cfil 21457 . . . . . . . . . . . . 13  |- CauFil  =  ( d  e.  U. ran  *Met  |->  { f  e.  ( Fil `  dom  dom  d )  |  A. x  e.  RR+  E. y  e.  f  ( d " ( y  X.  y ) )  C_  ( 0 [,) x
) } )
54dmmptss 5503 . . . . . . . . . . . 12  |-  dom CauFil  C_  U. ran  *Met
6 elfvdm 5892 . . . . . . . . . . . 12  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  dom CauFil )
75, 6sseldi 3502 . . . . . . . . . . 11  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  U.
ran  *Met )
8 xmetunirn 20603 . . . . . . . . . . 11  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
97, 8sylib 196 . . . . . . . . . 10  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  ( *Met `  dom  dom 
D ) )
10 cfilfcls.2 . . . . . . . . . . 11  |-  X  =  dom  dom  D
1110fveq2i 5869 . . . . . . . . . 10  |-  ( *Met `  X )  =  ( *Met ` 
dom  dom  D )
129, 11syl6eleqr 2566 . . . . . . . . 9  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  ( *Met `  X
) )
1312adantr 465 . . . . . . . 8  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  D  e.  ( *Met `  X
) )
14 cfilfcls.1 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
1514mopntopon 20705 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
1613, 15syl 16 . . . . . . 7  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  J  e.  (TopOn `  X ) )
17 toponuni 19223 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1816, 17syl 16 . . . . . 6  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  X  =  U. J )
193, 18eleqtrrd 2558 . . . . 5  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  x  e.  X )
2014mopni2 20759 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  J  /\  x  e.  y
)  ->  E. r  e.  RR+  ( x (
ball `  D )
r )  C_  y
)
21203expb 1197 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  E. r  e.  RR+  (
x ( ball `  D
) r )  C_  y )
2213, 21sylan 471 . . . . . . . 8  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  E. r  e.  RR+  (
x ( ball `  D
) r )  C_  y )
23 cfilfil 21469 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D ) )  ->  F  e.  ( Fil `  X ) )
2412, 23mpancom 669 . . . . . . . . . . 11  |-  ( F  e.  (CauFil `  D
)  ->  F  e.  ( Fil `  X ) )
2524adantr 465 . . . . . . . . . 10  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  F  e.  ( Fil `  X ) )
2625ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  F  e.  ( Fil `  X ) )
2713adantr 465 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  D  e.  ( *Met `  X ) )
28 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  F  e.  (CauFil `  D )
)
29 rphalfcl 11244 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR+ )
3029adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  ( r  /  2 )  e.  RR+ )
31 rphalfcl 11244 . . . . . . . . . . . . 13  |-  ( ( r  /  2 )  e.  RR+  ->  ( ( r  /  2 )  /  2 )  e.  RR+ )
3230, 31syl 16 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  ( ( r  /  2 )  /  2 )  e.  RR+ )
33 cfil3i 21471 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  (
( r  /  2
)  /  2 )  e.  RR+ )  ->  E. y  e.  X  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  e.  F
)
3427, 28, 32, 33syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  E. y  e.  X  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  e.  F
)
3525ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  F  e.  ( Fil `  X ) )
36 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F )
3727adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  D  e.  ( *Met `  X ) )
3819ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  x  e.  X )
39 rpxr 11227 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  ->  r  e. 
RR* )
4039ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
r  e.  RR* )
41 blssm 20684 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  D ) r ) 
C_  X )
4237, 38, 40, 41syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) r ) 
C_  X )
43 simpllr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  x  e.  ( J  fClus  F ) )
4430adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( r  /  2
)  e.  RR+ )
45 rpxr 11227 . . . . . . . . . . . . . . . . 17  |-  ( ( r  /  2 )  e.  RR+  ->  ( r  /  2 )  e. 
RR* )
4644, 45syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( r  /  2
)  e.  RR* )
4714blopn 20766 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR* )  ->  ( x ( ball `  D ) ( r  /  2 ) )  e.  J )
4837, 38, 46, 47syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) ( r  /  2 ) )  e.  J )
49 blcntr 20679 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) ( r  / 
2 ) ) )
5037, 38, 44, 49syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  x  e.  ( x
( ball `  D )
( r  /  2
) ) )
51 fclsopni 20279 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( J 
fClus  F )  /\  (
( x ( ball `  D ) ( r  /  2 ) )  e.  J  /\  x  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  e.  F
) )  ->  (
( x ( ball `  D ) ( r  /  2 ) )  i^i  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) ) )  =/=  (/) )
5243, 48, 50, 36, 51syl13anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( ( x (
ball `  D )
( r  /  2
) )  i^i  (
y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) )  =/=  (/) )
53 n0 3794 . . . . . . . . . . . . . 14  |-  ( ( ( x ( ball `  D ) ( r  /  2 ) )  i^i  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) ) )  =/=  (/) 
<->  E. z  z  e.  ( ( x (
ball `  D )
( r  /  2
) )  i^i  (
y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )
5452, 53sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  E. z  z  e.  ( ( x (
ball `  D )
( r  /  2
) )  i^i  (
y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )
55 elin 3687 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ( x ( ball `  D
) ( r  / 
2 ) )  i^i  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) )  <->  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )
5637adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  D  e.  ( *Met `  X
) )
57 simplrl 759 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  y  e.  X )
5844adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( r  /  2 )  e.  RR+ )
5958rpred 11256 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( r  /  2 )  e.  RR )
60 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  z  e.  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) )
61 blhalf 20671 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
( r  /  2
)  e.  RR  /\  z  e.  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) ) ) )  ->  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
z ( ball `  D
) ( r  / 
2 ) ) )
6256, 57, 59, 60, 61syl22anc 1229 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
z ( ball `  D
) ( r  / 
2 ) ) )
63 blssm 20684 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR* )  ->  ( x ( ball `  D ) ( r  /  2 ) ) 
C_  X )
6437, 38, 46, 63syl3anc 1228 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) ( r  /  2 ) ) 
C_  X )
6564sselda 3504 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  z  e.  ( x ( ball `  D
) ( r  / 
2 ) ) )  ->  z  e.  X
)
6665adantrr 716 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  z  e.  X )
67 simpllr 758 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  r  e.  RR+ )
6867rpred 11256 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  r  e.  RR )
69 simprl 755 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  z  e.  ( x ( ball `  D ) ( r  /  2 ) ) )
7058, 45syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( r  /  2 )  e. 
RR* )
7138adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  x  e.  X )
72 blcom 20660 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( r  /  2 )  e. 
RR* )  /\  (
x  e.  X  /\  z  e.  X )
)  ->  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  <-> 
x  e.  ( z ( ball `  D
) ( r  / 
2 ) ) ) )
7356, 70, 71, 66, 72syl22anc 1229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  <-> 
x  e.  ( z ( ball `  D
) ( r  / 
2 ) ) ) )
7469, 73mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  x  e.  ( z ( ball `  D ) ( r  /  2 ) ) )
75 blhalf 20671 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  X )  /\  (
r  e.  RR  /\  x  e.  ( z
( ball `  D )
( r  /  2
) ) ) )  ->  ( z (
ball `  D )
( r  /  2
) )  C_  (
x ( ball `  D
) r ) )
7656, 66, 68, 74, 75syl22anc 1229 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( z
( ball `  D )
( r  /  2
) )  C_  (
x ( ball `  D
) r ) )
7762, 76sstrd 3514 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) )
7877ex 434 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) )  ->  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) ) )
7955, 78syl5bi 217 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( z  e.  ( ( x ( ball `  D ) ( r  /  2 ) )  i^i  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) ) )  -> 
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) 
C_  ( x (
ball `  D )
r ) ) )
8079exlimdv 1700 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( E. z  z  e.  ( ( x ( ball `  D
) ( r  / 
2 ) )  i^i  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) )  ->  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) ) )
8154, 80mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) 
C_  ( x (
ball `  D )
r ) )
82 filss 20117 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F  /\  (
x ( ball `  D
) r )  C_  X  /\  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) ) )  ->  ( x
( ball `  D )
r )  e.  F
)
8335, 36, 42, 81, 82syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) r )  e.  F )
8434, 83rexlimddv 2959 . . . . . . . . . 10  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  ( x ( ball `  D
) r )  e.  F )
8584ad2ant2r 746 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  ( x (
ball `  D )
r )  e.  F
)
86 toponss 19225 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  y  C_  X )
8786adantrr 716 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  (
y  e.  J  /\  x  e.  y )
)  ->  y  C_  X )
8816, 87sylan 471 . . . . . . . . . 10  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  C_  X )
8988adantr 465 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  y  C_  X
)
90 simprr 756 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  ( x (
ball `  D )
r )  C_  y
)
91 filss 20117 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
( x ( ball `  D ) r )  e.  F  /\  y  C_  X  /\  ( x ( ball `  D
) r )  C_  y ) )  -> 
y  e.  F )
9226, 85, 89, 90, 91syl13anc 1230 . . . . . . . 8  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  y  e.  F
)
9322, 92rexlimddv 2959 . . . . . . 7  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  e.  F )
9493expr 615 . . . . . 6  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  y  e.  J )  ->  (
x  e.  y  -> 
y  e.  F ) )
9594ralrimiva 2878 . . . . 5  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) )
96 flimopn 20239 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
9716, 25, 96syl2anc 661 . . . . 5  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  ( x  e.  ( J  fLim  F
)  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
9819, 95, 97mpbir2and 920 . . . 4  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  x  e.  ( J  fLim  F ) )
9998ex 434 . . 3  |-  ( F  e.  (CauFil `  D
)  ->  ( x  e.  ( J  fClus  F )  ->  x  e.  ( J  fLim  F )
) )
10099ssrdv 3510 . 2  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fClus  F )  C_  ( J  fLim  F ) )
101 flimfcls 20290 . . 3  |-  ( J 
fLim  F )  C_  ( J  fClus  F )
102101a1i 11 . 2  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fLim  F )  C_  ( J  fClus  F ) )
103100, 102eqssd 3521 1  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fClus  F )  =  ( J  fLim  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    i^i cin 3475    C_ wss 3476   (/)c0 3785   U.cuni 4245    X. cxp 4997   dom cdm 4999   ran crn 5000   "cima 5002   ` cfv 5588  (class class class)co 6284   RRcr 9491   0cc0 9492   RR*cxr 9627    / cdiv 10206   2c2 10585   RR+crp 11220   [,)cico 11531   *Metcxmt 18202   ballcbl 18204   MetOpencmopn 18207  TopOnctopon 19190   Filcfil 20109    fLim cflim 20198    fClus cfcls 20200  CauFilccfil 21454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ico 11535  df-topgen 14699  df-psmet 18210  df-xmet 18211  df-bl 18213  df-mopn 18214  df-fbas 18215  df-top 19194  df-bases 19196  df-topon 19197  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-fil 20110  df-flim 20203  df-fcls 20205  df-cfil 21457
This theorem is referenced by:  relcmpcmet  21518
  Copyright terms: Public domain W3C validator