MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilfcls Structured version   Unicode version

Theorem cfilfcls 20784
Description: Similar to ultrafilters (uffclsflim 19603), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cfilfcls.1  |-  J  =  ( MetOpen `  D )
cfilfcls.2  |-  X  =  dom  dom  D
Assertion
Ref Expression
cfilfcls  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fClus  F )  =  ( J  fLim  F )
)

Proof of Theorem cfilfcls
Dummy variables  x  y  z  f  r 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2442 . . . . . . . 8  |-  U. J  =  U. J
21fclselbas 19588 . . . . . . 7  |-  ( x  e.  ( J  fClus  F )  ->  x  e.  U. J )
32adantl 466 . . . . . 6  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  x  e.  U. J )
4 df-cfil 20765 . . . . . . . . . . . . 13  |- CauFil  =  ( d  e.  U. ran  *Met  |->  { f  e.  ( Fil `  dom  dom  d )  |  A. x  e.  RR+  E. y  e.  f  ( d " ( y  X.  y ) )  C_  ( 0 [,) x
) } )
54dmmptss 5333 . . . . . . . . . . . 12  |-  dom CauFil  C_  U. ran  *Met
6 elfvdm 5715 . . . . . . . . . . . 12  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  dom CauFil )
75, 6sseldi 3353 . . . . . . . . . . 11  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  U.
ran  *Met )
8 xmetunirn 19911 . . . . . . . . . . 11  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
97, 8sylib 196 . . . . . . . . . 10  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  ( *Met `  dom  dom 
D ) )
10 cfilfcls.2 . . . . . . . . . . 11  |-  X  =  dom  dom  D
1110fveq2i 5693 . . . . . . . . . 10  |-  ( *Met `  X )  =  ( *Met ` 
dom  dom  D )
129, 11syl6eleqr 2533 . . . . . . . . 9  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  ( *Met `  X
) )
1312adantr 465 . . . . . . . 8  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  D  e.  ( *Met `  X
) )
14 cfilfcls.1 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
1514mopntopon 20013 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
1613, 15syl 16 . . . . . . 7  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  J  e.  (TopOn `  X ) )
17 toponuni 18531 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1816, 17syl 16 . . . . . 6  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  X  =  U. J )
193, 18eleqtrrd 2519 . . . . 5  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  x  e.  X )
2014mopni2 20067 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  J  /\  x  e.  y
)  ->  E. r  e.  RR+  ( x (
ball `  D )
r )  C_  y
)
21203expb 1188 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  E. r  e.  RR+  (
x ( ball `  D
) r )  C_  y )
2213, 21sylan 471 . . . . . . . 8  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  E. r  e.  RR+  (
x ( ball `  D
) r )  C_  y )
23 cfilfil 20777 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D ) )  ->  F  e.  ( Fil `  X ) )
2412, 23mpancom 669 . . . . . . . . . . 11  |-  ( F  e.  (CauFil `  D
)  ->  F  e.  ( Fil `  X ) )
2524adantr 465 . . . . . . . . . 10  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  F  e.  ( Fil `  X ) )
2625ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  F  e.  ( Fil `  X ) )
2713adantr 465 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  D  e.  ( *Met `  X ) )
28 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  F  e.  (CauFil `  D )
)
29 rphalfcl 11014 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR+ )
3029adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  ( r  /  2 )  e.  RR+ )
31 rphalfcl 11014 . . . . . . . . . . . . 13  |-  ( ( r  /  2 )  e.  RR+  ->  ( ( r  /  2 )  /  2 )  e.  RR+ )
3230, 31syl 16 . . . . . . . . . . . 12  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  ( ( r  /  2 )  /  2 )  e.  RR+ )
33 cfil3i 20779 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  (
( r  /  2
)  /  2 )  e.  RR+ )  ->  E. y  e.  X  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  e.  F
)
3427, 28, 32, 33syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  E. y  e.  X  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  e.  F
)
3525ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  F  e.  ( Fil `  X ) )
36 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F )
3727adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  D  e.  ( *Met `  X ) )
3819ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  x  e.  X )
39 rpxr 10997 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  ->  r  e. 
RR* )
4039ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
r  e.  RR* )
41 blssm 19992 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  D ) r ) 
C_  X )
4237, 38, 40, 41syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) r ) 
C_  X )
43 simpllr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  x  e.  ( J  fClus  F ) )
4430adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( r  /  2
)  e.  RR+ )
45 rpxr 10997 . . . . . . . . . . . . . . . . 17  |-  ( ( r  /  2 )  e.  RR+  ->  ( r  /  2 )  e. 
RR* )
4644, 45syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( r  /  2
)  e.  RR* )
4714blopn 20074 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR* )  ->  ( x ( ball `  D ) ( r  /  2 ) )  e.  J )
4837, 38, 46, 47syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) ( r  /  2 ) )  e.  J )
49 blcntr 19987 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) ( r  / 
2 ) ) )
5037, 38, 44, 49syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  x  e.  ( x
( ball `  D )
( r  /  2
) ) )
51 fclsopni 19587 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( J 
fClus  F )  /\  (
( x ( ball `  D ) ( r  /  2 ) )  e.  J  /\  x  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  e.  F
) )  ->  (
( x ( ball `  D ) ( r  /  2 ) )  i^i  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) ) )  =/=  (/) )
5243, 48, 50, 36, 51syl13anc 1220 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( ( x (
ball `  D )
( r  /  2
) )  i^i  (
y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) )  =/=  (/) )
53 n0 3645 . . . . . . . . . . . . . 14  |-  ( ( ( x ( ball `  D ) ( r  /  2 ) )  i^i  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) ) )  =/=  (/) 
<->  E. z  z  e.  ( ( x (
ball `  D )
( r  /  2
) )  i^i  (
y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )
5452, 53sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  ->  E. z  z  e.  ( ( x (
ball `  D )
( r  /  2
) )  i^i  (
y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )
55 elin 3538 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ( x ( ball `  D
) ( r  / 
2 ) )  i^i  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) )  <->  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )
5637adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  D  e.  ( *Met `  X
) )
57 simplrl 759 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  y  e.  X )
5844adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( r  /  2 )  e.  RR+ )
5958rpred 11026 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( r  /  2 )  e.  RR )
60 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  z  e.  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) )
61 blhalf 19979 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
( r  /  2
)  e.  RR  /\  z  e.  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) ) ) )  ->  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
z ( ball `  D
) ( r  / 
2 ) ) )
6256, 57, 59, 60, 61syl22anc 1219 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
z ( ball `  D
) ( r  / 
2 ) ) )
63 blssm 19992 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR* )  ->  ( x ( ball `  D ) ( r  /  2 ) ) 
C_  X )
6437, 38, 46, 63syl3anc 1218 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) ( r  /  2 ) ) 
C_  X )
6564sselda 3355 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  z  e.  ( x ( ball `  D
) ( r  / 
2 ) ) )  ->  z  e.  X
)
6665adantrr 716 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  z  e.  X )
67 simpllr 758 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  r  e.  RR+ )
6867rpred 11026 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  r  e.  RR )
69 simprl 755 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  z  e.  ( x ( ball `  D ) ( r  /  2 ) ) )
7058, 45syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( r  /  2 )  e. 
RR* )
7138adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  x  e.  X )
72 blcom 19968 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( r  /  2 )  e. 
RR* )  /\  (
x  e.  X  /\  z  e.  X )
)  ->  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  <-> 
x  e.  ( z ( ball `  D
) ( r  / 
2 ) ) ) )
7356, 70, 71, 66, 72syl22anc 1219 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  <-> 
x  e.  ( z ( ball `  D
) ( r  / 
2 ) ) ) )
7469, 73mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  x  e.  ( z ( ball `  D ) ( r  /  2 ) ) )
75 blhalf 19979 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  X )  /\  (
r  e.  RR  /\  x  e.  ( z
( ball `  D )
( r  /  2
) ) ) )  ->  ( z (
ball `  D )
( r  /  2
) )  C_  (
x ( ball `  D
) r ) )
7656, 66, 68, 74, 75syl22anc 1219 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( z
( ball `  D )
( r  /  2
) )  C_  (
x ( ball `  D
) r ) )
7762, 76sstrd 3365 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  (CauFil `  D
)  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  (
y  e.  X  /\  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F ) )  /\  ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) ) )  ->  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) )
7877ex 434 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( ( z  e.  ( x ( ball `  D ) ( r  /  2 ) )  /\  z  e.  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) ) )  ->  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) ) )
7955, 78syl5bi 217 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( z  e.  ( ( x ( ball `  D ) ( r  /  2 ) )  i^i  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) ) )  -> 
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) 
C_  ( x (
ball `  D )
r ) ) )
8079exlimdv 1690 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( E. z  z  e.  ( ( x ( ball `  D
) ( r  / 
2 ) )  i^i  ( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) )  ->  ( y
( ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) ) )
8154, 80mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) ) 
C_  ( x (
ball `  D )
r ) )
82 filss 19425 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
( y ( ball `  D ) ( ( r  /  2 )  /  2 ) )  e.  F  /\  (
x ( ball `  D
) r )  C_  X  /\  ( y (
ball `  D )
( ( r  / 
2 )  /  2
) )  C_  (
x ( ball `  D
) r ) ) )  ->  ( x
( ball `  D )
r )  e.  F
)
8335, 36, 42, 81, 82syl13anc 1220 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  /\  ( y  e.  X  /\  ( y ( ball `  D
) ( ( r  /  2 )  / 
2 ) )  e.  F ) )  -> 
( x ( ball `  D ) r )  e.  F )
8434, 83rexlimddv 2844 . . . . . . . . . 10  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  r  e.  RR+ )  ->  ( x ( ball `  D
) r )  e.  F )
8584ad2ant2r 746 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  ( x (
ball `  D )
r )  e.  F
)
86 toponss 18533 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  y  C_  X )
8786adantrr 716 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  (
y  e.  J  /\  x  e.  y )
)  ->  y  C_  X )
8816, 87sylan 471 . . . . . . . . . 10  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  C_  X )
8988adantr 465 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  y  C_  X
)
90 simprr 756 . . . . . . . . 9  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  ( x (
ball `  D )
r )  C_  y
)
91 filss 19425 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
( x ( ball `  D ) r )  e.  F  /\  y  C_  X  /\  ( x ( ball `  D
) r )  C_  y ) )  -> 
y  e.  F )
9226, 85, 89, 90, 91syl13anc 1220 . . . . . . . 8  |-  ( ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  /\  ( r  e.  RR+  /\  ( x ( ball `  D ) r ) 
C_  y ) )  ->  y  e.  F
)
9322, 92rexlimddv 2844 . . . . . . 7  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  e.  F )
9493expr 615 . . . . . 6  |-  ( ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  /\  y  e.  J )  ->  (
x  e.  y  -> 
y  e.  F ) )
9594ralrimiva 2798 . . . . 5  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) )
96 flimopn 19547 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
9716, 25, 96syl2anc 661 . . . . 5  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  ( x  e.  ( J  fLim  F
)  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
9819, 95, 97mpbir2and 913 . . . 4  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  ( J  fClus  F ) )  ->  x  e.  ( J  fLim  F ) )
9998ex 434 . . 3  |-  ( F  e.  (CauFil `  D
)  ->  ( x  e.  ( J  fClus  F )  ->  x  e.  ( J  fLim  F )
) )
10099ssrdv 3361 . 2  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fClus  F )  C_  ( J  fLim  F ) )
101 flimfcls 19598 . . 3  |-  ( J 
fLim  F )  C_  ( J  fClus  F )
102101a1i 11 . 2  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fLim  F )  C_  ( J  fClus  F ) )
103100, 102eqssd 3372 1  |-  ( F  e.  (CauFil `  D
)  ->  ( J  fClus  F )  =  ( J  fLim  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2605   A.wral 2714   E.wrex 2715   {crab 2718    i^i cin 3326    C_ wss 3327   (/)c0 3636   U.cuni 4090    X. cxp 4837   dom cdm 4839   ran crn 4840   "cima 4842   ` cfv 5417  (class class class)co 6090   RRcr 9280   0cc0 9281   RR*cxr 9416    / cdiv 9992   2c2 10370   RR+crp 10990   [,)cico 11301   *Metcxmt 17800   ballcbl 17802   MetOpencmopn 17805  TopOnctopon 18498   Filcfil 19417    fLim cflim 19506    fClus cfcls 19508  CauFilccfil 20762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-sup 7690  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-n0 10579  df-z 10646  df-uz 10861  df-q 10953  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-ico 11305  df-topgen 14381  df-psmet 17808  df-xmet 17809  df-bl 17811  df-mopn 17812  df-fbas 17813  df-top 18502  df-bases 18504  df-topon 18505  df-cld 18622  df-ntr 18623  df-cls 18624  df-nei 18701  df-fil 19418  df-flim 19511  df-fcls 19513  df-cfil 20765
This theorem is referenced by:  relcmpcmet  20826
  Copyright terms: Public domain W3C validator