MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfil3i Structured version   Unicode version

Theorem cfil3i 20785
Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfil3i  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  E. x  e.  X  ( x
( ball `  D ) R )  e.  F
)
Distinct variable groups:    x, F    x, X    x, R    x, D

Proof of Theorem cfil3i
Dummy variables  s 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfili 20784 . . 3  |-  ( ( F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  E. s  e.  F  A. x  e.  s  A. y  e.  s  ( x D y )  < 
R )
213adant1 1006 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  E. s  e.  F  A. x  e.  s  A. y  e.  s  ( x D y )  < 
R )
3 cfilfil 20783 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D ) )  ->  F  e.  ( Fil `  X ) )
433adant3 1008 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  F  e.  ( Fil `  X
) )
5 fileln0 19428 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  s  =/=  (/) )
64, 5sylan 471 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F )  ->  s  =/=  (/) )
7 r19.2z 3774 . . . . . 6  |-  ( ( s  =/=  (/)  /\  A. x  e.  s  A. y  e.  s  (
x D y )  <  R )  ->  E. x  e.  s  A. y  e.  s 
( x D y )  <  R )
87ex 434 . . . . 5  |-  ( s  =/=  (/)  ->  ( A. x  e.  s  A. y  e.  s  (
x D y )  <  R  ->  E. x  e.  s  A. y  e.  s  ( x D y )  < 
R ) )
96, 8syl 16 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F )  ->  ( A. x  e.  s  A. y  e.  s  ( x D y )  <  R  ->  E. x  e.  s 
A. y  e.  s  ( x D y )  <  R ) )
10 filelss 19430 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  s  C_  X )
114, 10sylan 471 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F )  ->  s  C_  X )
12 ssrexv 3422 . . . . 5  |-  ( s 
C_  X  ->  ( E. x  e.  s  A. y  e.  s 
( x D y )  <  R  ->  E. x  e.  X  A. y  e.  s 
( x D y )  <  R ) )
1311, 12syl 16 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F )  ->  ( E. x  e.  s  A. y  e.  s  ( x D y )  <  R  ->  E. x  e.  X  A. y  e.  s 
( x D y )  <  R ) )
14 dfss3 3351 . . . . . . 7  |-  ( s 
C_  ( x (
ball `  D ) R )  <->  A. y  e.  s  y  e.  ( x ( ball `  D ) R ) )
15 simpl1 991 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F )  ->  D  e.  ( *Met `  X ) )
1615ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  /\  y  e.  s )  ->  D  e.  ( *Met `  X ) )
17 simpll3 1029 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  R  e.  RR+ )
1817rpxrd 11033 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  R  e.  RR* )
1918adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  /\  y  e.  s )  ->  R  e.  RR* )
20 simplr 754 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  /\  y  e.  s )  ->  x  e.  X )
2111adantr 465 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  s  C_  X )
2221sselda 3361 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  /\  y  e.  s )  ->  y  e.  X )
23 elbl2 19970 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  R  e.  RR* )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( y  e.  ( x ( ball `  D
) R )  <->  ( x D y )  < 
R ) )
2416, 19, 20, 22, 23syl22anc 1219 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  /\  y  e.  s )  ->  (
y  e.  ( x ( ball `  D
) R )  <->  ( x D y )  < 
R ) )
2524ralbidva 2736 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  ( A. y  e.  s 
y  e.  ( x ( ball `  D
) R )  <->  A. y  e.  s  ( x D y )  < 
R ) )
2614, 25syl5bb 257 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  (
s  C_  ( x
( ball `  D ) R )  <->  A. y  e.  s  ( x D y )  < 
R ) )
274ad2antrr 725 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  F  e.  ( Fil `  X
) )
28 simplr 754 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  s  e.  F )
2915adantr 465 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  D  e.  ( *Met `  X ) )
30 simpr 461 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  x  e.  X )
31 blssm 19998 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  R  e.  RR* )  ->  ( x ( ball `  D ) R ) 
C_  X )
3229, 30, 18, 31syl3anc 1218 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  (
x ( ball `  D
) R )  C_  X )
33 filss 19431 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
s  e.  F  /\  ( x ( ball `  D ) R ) 
C_  X  /\  s  C_  ( x ( ball `  D ) R ) ) )  ->  (
x ( ball `  D
) R )  e.  F )
34333exp2 1205 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( s  e.  F  ->  ( ( x ( ball `  D
) R )  C_  X  ->  ( s  C_  ( x ( ball `  D ) R )  ->  ( x (
ball `  D ) R )  e.  F
) ) ) )
3527, 28, 32, 34syl3c 61 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  (
s  C_  ( x
( ball `  D ) R )  ->  (
x ( ball `  D
) R )  e.  F ) )
3626, 35sylbird 235 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F
)  /\  x  e.  X )  ->  ( A. y  e.  s 
( x D y )  <  R  -> 
( x ( ball `  D ) R )  e.  F ) )
3736reximdva 2833 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F )  ->  ( E. x  e.  X  A. y  e.  s  ( x D y )  <  R  ->  E. x  e.  X  ( x ( ball `  D ) R )  e.  F ) )
389, 13, 373syld 55 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  /\  s  e.  F )  ->  ( A. x  e.  s  A. y  e.  s  ( x D y )  <  R  ->  E. x  e.  X  ( x ( ball `  D ) R )  e.  F ) )
3938rexlimdva 2846 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  ( E. s  e.  F  A. x  e.  s  A. y  e.  s 
( x D y )  <  R  ->  E. x  e.  X  ( x ( ball `  D ) R )  e.  F ) )
402, 39mpd 15 1  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  E. x  e.  X  ( x
( ball `  D ) R )  e.  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721    C_ wss 3333   (/)c0 3642   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   RR*cxr 9422    < clt 9423   RR+crp 10996   *Metcxmt 17806   ballcbl 17808   Filcfil 19423  CauFilccfil 20768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-2 10385  df-rp 10997  df-xneg 11094  df-xadd 11095  df-xmul 11096  df-ico 11311  df-psmet 17814  df-xmet 17815  df-bl 17817  df-fbas 17819  df-fil 19424  df-cfil 20771
This theorem is referenced by:  iscfil3  20789  cfilfcls  20790  relcmpcmet  20832
  Copyright terms: Public domain W3C validator