MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcoflem Structured version   Unicode version

Theorem cfcoflem 8653
Description: Lemma for cfcof 8655, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
cfcoflem  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( cf `  A )  C_  ( cf `  B ) ) )
Distinct variable groups:    A, f, x, y    B, f, x, y

Proof of Theorem cfcoflem
Dummy variables  g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 8639 . . 3  |-  ( B  e.  On  ->  E. g
( g : ( cf `  B )
-1-1-> B  /\  A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )
) )
2 f1f 5739 . . . . . 6  |-  ( g : ( cf `  B
) -1-1-> B  ->  g : ( cf `  B
) --> B )
3 fco 5699 . . . . . . . . . . . . . 14  |-  ( ( f : B --> A  /\  g : ( cf `  B
) --> B )  -> 
( f  o.  g
) : ( cf `  B ) --> A )
43adantlr 719 . . . . . . . . . . . . 13  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
f  o.  g ) : ( cf `  B
) --> A )
54adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) ) )  -> 
( f  o.  g
) : ( cf `  B ) --> A )
6 r19.29 2902 . . . . . . . . . . . . . . . 16  |-  ( ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  E. y  e.  B  x  C_  ( f `  y
) )  ->  E. y  e.  B  ( E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  /\  x  C_  (
f `  y )
) )
7 ffvelrn 5979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B ) )  -> 
( g `  z
)  e.  B )
8 ffn 5689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( f : B --> A  -> 
f  Fn  B )
9 smoword 7040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  ( y  e.  B  /\  ( g `  z
)  e.  B ) )  ->  ( y  C_  ( g `  z
)  <->  ( f `  y )  C_  (
f `  ( g `  z ) ) ) )
109biimpd 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  ( y  e.  B  /\  ( g `  z
)  e.  B ) )  ->  ( y  C_  ( g `  z
)  ->  ( f `  y )  C_  (
f `  ( g `  z ) ) ) )
1110exp32 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( f  Fn  B  /\  Smo  f )  ->  (
y  e.  B  -> 
( ( g `  z )  e.  B  ->  ( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
128, 11sylan 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
y  e.  B  -> 
( ( g `  z )  e.  B  ->  ( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
137, 12syl7 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
y  e.  B  -> 
( ( g : ( cf `  B
) --> B  /\  z  e.  ( cf `  B
) )  ->  (
y  C_  ( g `  z )  ->  (
f `  y )  C_  ( f `  (
g `  z )
) ) ) ) )
1413com23 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B
) )  ->  (
y  e.  B  -> 
( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
1514expdimp 438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
z  e.  ( cf `  B )  ->  (
y  e.  B  -> 
( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
16153imp2 1220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( f `  y )  C_  (
f `  ( g `  z ) ) )
17 sstr2 3414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x 
C_  ( f `  y )  ->  (
( f `  y
)  C_  ( f `  ( g `  z
) )  ->  x  C_  ( f `  (
g `  z )
) ) )
1816, 17syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( x  C_  ( f `  y
)  ->  x  C_  (
f `  ( g `  z ) ) ) )
19 fvco3 5902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B ) )  -> 
( ( f  o.  g ) `  z
)  =  ( f `
 ( g `  z ) ) )
2019sseq2d 3435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B ) )  -> 
( x  C_  (
( f  o.  g
) `  z )  <->  x 
C_  ( f `  ( g `  z
) ) ) )
2120adantll 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  z  e.  ( cf `  B ) )  -> 
( x  C_  (
( f  o.  g
) `  z )  <->  x 
C_  ( f `  ( g `  z
) ) ) )
22213ad2antr1 1170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( x  C_  ( ( f  o.  g ) `  z
)  <->  x  C_  ( f `
 ( g `  z ) ) ) )
2318, 22sylibrd 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( x  C_  ( f `  y
)  ->  x  C_  (
( f  o.  g
) `  z )
) )
2423expcom 436 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `  z
) )  ->  (
( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  -> 
( x  C_  (
f `  y )  ->  x  C_  ( (
f  o.  g ) `
 z ) ) ) )
25243expia 1207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  ( cf `  B )  /\  y  e.  B )  ->  (
y  C_  ( g `  z )  ->  (
( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  -> 
( x  C_  (
f `  y )  ->  x  C_  ( (
f  o.  g ) `
 z ) ) ) ) )
2625com4t 88 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
x  C_  ( f `  y )  ->  (
( z  e.  ( cf `  B )  /\  y  e.  B
)  ->  ( y  C_  ( g `  z
)  ->  x  C_  (
( f  o.  g
) `  z )
) ) ) )
2726imp 430 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  -> 
( ( z  e.  ( cf `  B
)  /\  y  e.  B )  ->  (
y  C_  ( g `  z )  ->  x  C_  ( ( f  o.  g ) `  z
) ) ) )
2827expcomd 439 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  -> 
( y  e.  B  ->  ( z  e.  ( cf `  B )  ->  ( y  C_  ( g `  z
)  ->  x  C_  (
( f  o.  g
) `  z )
) ) ) )
2928imp31 433 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  /\  y  e.  B )  /\  z  e.  ( cf `  B ) )  ->  ( y  C_  ( g `  z
)  ->  x  C_  (
( f  o.  g
) `  z )
) )
3029reximdva 2839 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  /\  y  e.  B )  ->  ( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  ->  E. z  e.  ( cf `  B ) x  C_  ( (
f  o.  g ) `
 z ) ) )
3130exp31 607 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
x  C_  ( f `  y )  ->  (
y  e.  B  -> 
( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  ->  E. z  e.  ( cf `  B ) x  C_  ( (
f  o.  g ) `
 z ) ) ) ) )
3231com34 86 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
x  C_  ( f `  y )  ->  ( E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  (
y  e.  B  ->  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) ) ) ) )
3332com23 81 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  ( E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  (
x  C_  ( f `  y )  ->  (
y  e.  B  ->  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) ) ) ) )
3433impd 432 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  /\  x  C_  ( f `
 y ) )  ->  ( y  e.  B  ->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) ) )
3534com23 81 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
y  e.  B  -> 
( ( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  /\  x  C_  ( f `
 y ) )  ->  E. z  e.  ( cf `  B ) x  C_  ( (
f  o.  g ) `
 z ) ) ) )
3635rexlimdv 2854 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  ( E. y  e.  B  ( E. z  e.  ( cf `  B ) y  C_  ( g `  z )  /\  x  C_  ( f `  y
) )  ->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
376, 36syl5 33 . . . . . . . . . . . . . . 15  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
( A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )  /\  E. y  e.  B  x  C_  ( f `  y ) )  ->  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) ) )
3837expdimp 438 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
) )  ->  ( E. y  e.  B  x  C_  ( f `  y )  ->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
3938ralimdv 2775 . . . . . . . . . . . . 13  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
) )  ->  ( A. x  e.  A  E. y  e.  B  x  C_  ( f `  y )  ->  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
4039impr 623 . . . . . . . . . . . 12  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) ) )  ->  A. x  e.  A  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) )
41 vex 3025 . . . . . . . . . . . . . 14  |-  f  e. 
_V
42 vex 3025 . . . . . . . . . . . . . 14  |-  g  e. 
_V
4341, 42coex 6703 . . . . . . . . . . . . 13  |-  ( f  o.  g )  e. 
_V
44 feq1 5671 . . . . . . . . . . . . . 14  |-  ( h  =  ( f  o.  g )  ->  (
h : ( cf `  B ) --> A  <->  ( f  o.  g ) : ( cf `  B ) --> A ) )
45 fveq1 5824 . . . . . . . . . . . . . . . . 17  |-  ( h  =  ( f  o.  g )  ->  (
h `  z )  =  ( ( f  o.  g ) `  z ) )
4645sseq2d 3435 . . . . . . . . . . . . . . . 16  |-  ( h  =  ( f  o.  g )  ->  (
x  C_  ( h `  z )  <->  x  C_  (
( f  o.  g
) `  z )
) )
4746rexbidv 2878 . . . . . . . . . . . . . . 15  |-  ( h  =  ( f  o.  g )  ->  ( E. z  e.  ( cf `  B ) x 
C_  ( h `  z )  <->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
4847ralbidv 2804 . . . . . . . . . . . . . 14  |-  ( h  =  ( f  o.  g )  ->  ( A. x  e.  A  E. z  e.  ( cf `  B ) x 
C_  ( h `  z )  <->  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
4944, 48anbi12d 715 . . . . . . . . . . . . 13  |-  ( h  =  ( f  o.  g )  ->  (
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
)  <->  ( ( f  o.  g ) : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( ( f  o.  g ) `  z
) ) ) )
5043, 49spcev 3116 . . . . . . . . . . . 12  |-  ( ( ( f  o.  g
) : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( ( f  o.  g ) `  z
) )  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) )
515, 40, 50syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) ) )  ->  E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) ) )
5251exp43 615 . . . . . . . . . 10  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
g : ( cf `  B ) --> B  -> 
( A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )  ->  ( A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )  ->  E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) ) ) ) ) )
5352com24 90 . . . . . . . . 9  |-  ( ( f : B --> A  /\  Smo  f )  ->  ( A. x  e.  A  E. y  e.  B  x  C_  ( f `  y )  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  (
g : ( cf `  B ) --> B  ->  E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) ) ) ) ) )
54533impia 1202 . . . . . . . 8  |-  ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  ->  ( g : ( cf `  B
) --> B  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
5554exlimiv 1770 . . . . . . 7  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  ->  ( g : ( cf `  B
) --> B  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
5655com13 83 . . . . . 6  |-  ( g : ( cf `  B
) --> B  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
572, 56syl 17 . . . . 5  |-  ( g : ( cf `  B
) -1-1-> B  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
5857imp 430 . . . 4  |-  ( ( g : ( cf `  B ) -1-1-> B  /\  A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
) )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) )
5958exlimiv 1770 . . 3  |-  ( E. g ( g : ( cf `  B
) -1-1-> B  /\  A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )
)  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) )
601, 59syl 17 . 2  |-  ( B  e.  On  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) )
61 cfon 8636 . . 3  |-  ( cf `  B )  e.  On
62 cfflb 8640 . . 3  |-  ( ( A  e.  On  /\  ( cf `  B )  e.  On )  -> 
( E. h ( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
6361, 62mpan2 675 . 2  |-  ( A  e.  On  ->  ( E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
6460, 63sylan9r 662 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( cf `  A )  C_  ( cf `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1657    e. wcel 1872   A.wral 2714   E.wrex 2715    C_ wss 3379    o. ccom 4800   Oncon0 5385    Fn wfn 5539   -->wf 5540   -1-1->wf1 5541   ` cfv 5544   Smo wsmo 7019   cfccf 8323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-smo 7020  df-recs 7045  df-er 7318  df-map 7429  df-en 7525  df-dom 7526  df-sdom 7527  df-card 8325  df-cf 8327  df-acn 8328
This theorem is referenced by:  cfcof  8655  cfidm  8656
  Copyright terms: Public domain W3C validator