MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcoflem Structured version   Unicode version

Theorem cfcoflem 8437
Description: Lemma for cfcof 8439, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
cfcoflem  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( cf `  A )  C_  ( cf `  B ) ) )
Distinct variable groups:    A, f, x, y    B, f, x, y

Proof of Theorem cfcoflem
Dummy variables  g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 8423 . . 3  |-  ( B  e.  On  ->  E. g
( g : ( cf `  B )
-1-1-> B  /\  A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )
) )
2 f1f 5603 . . . . . 6  |-  ( g : ( cf `  B
) -1-1-> B  ->  g : ( cf `  B
) --> B )
3 fco 5565 . . . . . . . . . . . . . 14  |-  ( ( f : B --> A  /\  g : ( cf `  B
) --> B )  -> 
( f  o.  g
) : ( cf `  B ) --> A )
43adantlr 709 . . . . . . . . . . . . 13  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
f  o.  g ) : ( cf `  B
) --> A )
54adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) ) )  -> 
( f  o.  g
) : ( cf `  B ) --> A )
6 r19.29 2855 . . . . . . . . . . . . . . . 16  |-  ( ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  E. y  e.  B  x  C_  ( f `  y
) )  ->  E. y  e.  B  ( E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  /\  x  C_  (
f `  y )
) )
7 ffvelrn 5838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B ) )  -> 
( g `  z
)  e.  B )
8 ffn 5556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( f : B --> A  -> 
f  Fn  B )
9 smoword 6823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  ( y  e.  B  /\  ( g `  z
)  e.  B ) )  ->  ( y  C_  ( g `  z
)  <->  ( f `  y )  C_  (
f `  ( g `  z ) ) ) )
109biimpd 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  ( y  e.  B  /\  ( g `  z
)  e.  B ) )  ->  ( y  C_  ( g `  z
)  ->  ( f `  y )  C_  (
f `  ( g `  z ) ) ) )
1110exp32 602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( f  Fn  B  /\  Smo  f )  ->  (
y  e.  B  -> 
( ( g `  z )  e.  B  ->  ( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
128, 11sylan 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
y  e.  B  -> 
( ( g `  z )  e.  B  ->  ( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
137, 12syl7 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
y  e.  B  -> 
( ( g : ( cf `  B
) --> B  /\  z  e.  ( cf `  B
) )  ->  (
y  C_  ( g `  z )  ->  (
f `  y )  C_  ( f `  (
g `  z )
) ) ) ) )
1413com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B
) )  ->  (
y  e.  B  -> 
( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
1514expdimp 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
z  e.  ( cf `  B )  ->  (
y  e.  B  -> 
( y  C_  (
g `  z )  ->  ( f `  y
)  C_  ( f `  ( g `  z
) ) ) ) ) )
16153imp2 1197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( f `  y )  C_  (
f `  ( g `  z ) ) )
17 sstr2 3360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x 
C_  ( f `  y )  ->  (
( f `  y
)  C_  ( f `  ( g `  z
) )  ->  x  C_  ( f `  (
g `  z )
) ) )
1816, 17syl5com 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( x  C_  ( f `  y
)  ->  x  C_  (
f `  ( g `  z ) ) ) )
19 fvco3 5765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B ) )  -> 
( ( f  o.  g ) `  z
)  =  ( f `
 ( g `  z ) ) )
2019sseq2d 3381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( g : ( cf `  B ) --> B  /\  z  e.  ( cf `  B ) )  -> 
( x  C_  (
( f  o.  g
) `  z )  <->  x 
C_  ( f `  ( g `  z
) ) ) )
2120adantll 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  z  e.  ( cf `  B ) )  -> 
( x  C_  (
( f  o.  g
) `  z )  <->  x 
C_  ( f `  ( g `  z
) ) ) )
22213ad2antr1 1148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( x  C_  ( ( f  o.  g ) `  z
)  <->  x  C_  ( f `
 ( g `  z ) ) ) )
2318, 22sylibrd 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `
 z ) ) )  ->  ( x  C_  ( f `  y
)  ->  x  C_  (
( f  o.  g
) `  z )
) )
2423expcom 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ( cf `  B )  /\  y  e.  B  /\  y  C_  ( g `  z
) )  ->  (
( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  -> 
( x  C_  (
f `  y )  ->  x  C_  ( (
f  o.  g ) `
 z ) ) ) )
25243expia 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  ( cf `  B )  /\  y  e.  B )  ->  (
y  C_  ( g `  z )  ->  (
( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  -> 
( x  C_  (
f `  y )  ->  x  C_  ( (
f  o.  g ) `
 z ) ) ) ) )
2625com4t 85 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
x  C_  ( f `  y )  ->  (
( z  e.  ( cf `  B )  /\  y  e.  B
)  ->  ( y  C_  ( g `  z
)  ->  x  C_  (
( f  o.  g
) `  z )
) ) ) )
2726imp 429 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  -> 
( ( z  e.  ( cf `  B
)  /\  y  e.  B )  ->  (
y  C_  ( g `  z )  ->  x  C_  ( ( f  o.  g ) `  z
) ) ) )
2827exp3acom23 1420 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  -> 
( y  e.  B  ->  ( z  e.  ( cf `  B )  ->  ( y  C_  ( g `  z
)  ->  x  C_  (
( f  o.  g
) `  z )
) ) ) )
2928imp31 432 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  /\  y  e.  B )  /\  z  e.  ( cf `  B ) )  ->  ( y  C_  ( g `  z
)  ->  x  C_  (
( f  o.  g
) `  z )
) )
3029reximdva 2826 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  x  C_  ( f `  y ) )  /\  y  e.  B )  ->  ( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  ->  E. z  e.  ( cf `  B ) x  C_  ( (
f  o.  g ) `
 z ) ) )
3130exp31 601 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
x  C_  ( f `  y )  ->  (
y  e.  B  -> 
( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  ->  E. z  e.  ( cf `  B ) x  C_  ( (
f  o.  g ) `
 z ) ) ) ) )
3231com34 83 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
x  C_  ( f `  y )  ->  ( E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  (
y  e.  B  ->  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) ) ) ) )
3332com23 78 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  ( E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  (
x  C_  ( f `  y )  ->  (
y  e.  B  ->  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) ) ) ) )
3433imp3a 431 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  /\  x  C_  ( f `
 y ) )  ->  ( y  e.  B  ->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) ) )
3534com23 78 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
y  e.  B  -> 
( ( E. z  e.  ( cf `  B
) y  C_  (
g `  z )  /\  x  C_  ( f `
 y ) )  ->  E. z  e.  ( cf `  B ) x  C_  ( (
f  o.  g ) `
 z ) ) ) )
3635rexlimdv 2838 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  ( E. y  e.  B  ( E. z  e.  ( cf `  B ) y  C_  ( g `  z )  /\  x  C_  ( f `  y
) )  ->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
376, 36syl5 32 . . . . . . . . . . . . . . 15  |-  ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B ) --> B )  ->  (
( A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )  /\  E. y  e.  B  x  C_  ( f `  y ) )  ->  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) ) )
3837expdimp 437 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
) )  ->  ( E. y  e.  B  x  C_  ( f `  y )  ->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
3938ralimdv 2793 . . . . . . . . . . . . 13  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
) )  ->  ( A. x  e.  A  E. y  e.  B  x  C_  ( f `  y )  ->  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
4039impr 616 . . . . . . . . . . . 12  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) ) )  ->  A. x  e.  A  E. z  e.  ( cf `  B ) x 
C_  ( ( f  o.  g ) `  z ) )
41 vex 2973 . . . . . . . . . . . . . 14  |-  f  e. 
_V
42 vex 2973 . . . . . . . . . . . . . 14  |-  g  e. 
_V
4341, 42coex 6528 . . . . . . . . . . . . 13  |-  ( f  o.  g )  e. 
_V
44 feq1 5539 . . . . . . . . . . . . . 14  |-  ( h  =  ( f  o.  g )  ->  (
h : ( cf `  B ) --> A  <->  ( f  o.  g ) : ( cf `  B ) --> A ) )
45 fveq1 5687 . . . . . . . . . . . . . . . . 17  |-  ( h  =  ( f  o.  g )  ->  (
h `  z )  =  ( ( f  o.  g ) `  z ) )
4645sseq2d 3381 . . . . . . . . . . . . . . . 16  |-  ( h  =  ( f  o.  g )  ->  (
x  C_  ( h `  z )  <->  x  C_  (
( f  o.  g
) `  z )
) )
4746rexbidv 2734 . . . . . . . . . . . . . . 15  |-  ( h  =  ( f  o.  g )  ->  ( E. z  e.  ( cf `  B ) x 
C_  ( h `  z )  <->  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
4847ralbidv 2733 . . . . . . . . . . . . . 14  |-  ( h  =  ( f  o.  g )  ->  ( A. x  e.  A  E. z  e.  ( cf `  B ) x 
C_  ( h `  z )  <->  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
( f  o.  g
) `  z )
) )
4944, 48anbi12d 705 . . . . . . . . . . . . 13  |-  ( h  =  ( f  o.  g )  ->  (
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
)  <->  ( ( f  o.  g ) : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( ( f  o.  g ) `  z
) ) ) )
5043, 49spcev 3061 . . . . . . . . . . . 12  |-  ( ( ( f  o.  g
) : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( ( f  o.  g ) `  z
) )  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) )
515, 40, 50syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ( f : B --> A  /\  Smo  f )  /\  g : ( cf `  B
) --> B )  /\  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) ) )  ->  E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) ) )
5251exp43 609 . . . . . . . . . 10  |-  ( ( f : B --> A  /\  Smo  f )  ->  (
g : ( cf `  B ) --> B  -> 
( A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )  ->  ( A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )  ->  E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) ) ) ) ) )
5352com24 87 . . . . . . . . 9  |-  ( ( f : B --> A  /\  Smo  f )  ->  ( A. x  e.  A  E. y  e.  B  x  C_  ( f `  y )  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  (
g : ( cf `  B ) --> B  ->  E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) ) ) ) ) )
54533impia 1179 . . . . . . . 8  |-  ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  ->  ( g : ( cf `  B
) --> B  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
5554exlimiv 1693 . . . . . . 7  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  ->  ( g : ( cf `  B
) --> B  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
5655com13 80 . . . . . 6  |-  ( g : ( cf `  B
) --> B  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y 
C_  ( g `  z )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
572, 56syl 16 . . . . 5  |-  ( g : ( cf `  B
) -1-1-> B  ->  ( A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
)  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) ) )
5857imp 429 . . . 4  |-  ( ( g : ( cf `  B ) -1-1-> B  /\  A. y  e.  B  E. z  e.  ( cf `  B ) y  C_  ( g `  z
) )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) )
5958exlimiv 1693 . . 3  |-  ( E. g ( g : ( cf `  B
) -1-1-> B  /\  A. y  e.  B  E. z  e.  ( cf `  B
) y  C_  (
g `  z )
)  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) )
601, 59syl 16 . 2  |-  ( B  e.  On  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  E. h
( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B
) x  C_  (
h `  z )
) ) )
61 cfon 8420 . . 3  |-  ( cf `  B )  e.  On
62 cfflb 8424 . . 3  |-  ( ( A  e.  On  /\  ( cf `  B )  e.  On )  -> 
( E. h ( h : ( cf `  B ) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
6361, 62mpan2 666 . 2  |-  ( A  e.  On  ->  ( E. h ( h : ( cf `  B
) --> A  /\  A. x  e.  A  E. z  e.  ( cf `  B ) x  C_  ( h `  z
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
6460, 63sylan9r 653 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( cf `  A )  C_  ( cf `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761   A.wral 2713   E.wrex 2714    C_ wss 3325   Oncon0 4715    o. ccom 4840    Fn wfn 5410   -->wf 5411   -1-1->wf1 5412   ` cfv 5415   Smo wsmo 6802   cfccf 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-smo 6803  df-recs 6828  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-card 8105  df-cf 8107  df-acn 8108
This theorem is referenced by:  cfcof  8439  cfidm  8440
  Copyright terms: Public domain W3C validator