MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcof Structured version   Unicode version

Theorem cfcof 8567
Description: If there is a cofinal map from  A to  B, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof  ( A ,  B ) and defines our  cf ( B ) as the minimum  B such that cof  ( A ,  B
). (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
cfcof  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Distinct variable groups:    w, f,
z, A    B, f, w, z

Proof of Theorem cfcof
Dummy variables  c 
g  h  k  r  s  t  x  y  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfcoflem 8565 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
21imp 427 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  C_  ( cf `  B ) )
3 cff1 8551 . . . . . . 7  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A )
-1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
4 f1f 5689 . . . . . . . . 9  |-  ( g : ( cf `  A
) -1-1-> A  ->  g : ( cf `  A
) --> A )
54anim1i 566 . . . . . . . 8  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  (
g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) ) )
65eximi 1664 . . . . . . 7  |-  ( E. g ( g : ( cf `  A
) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
)  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
73, 6syl 16 . . . . . 6  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
8 eqid 2382 . . . . . . 7  |-  ( y  e.  ( cf `  A
)  |->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )  =  ( y  e.  ( cf `  A ) 
|->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )
98coftr 8566 . . . . . 6  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  ( E. g ( g : ( cf `  A
) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
107, 9syl5com 30 . . . . 5  |-  ( A  e.  On  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
11 eloni 4802 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
12 cfon 8548 . . . . . . 7  |-  ( cf `  A )  e.  On
13 eqid 2382 . . . . . . . 8  |-  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }  =  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }
14 eqid 2382 . . . . . . . 8  |-  |^| { c  e.  ( cf `  A
)  |  r  C_  ( h `  c
) }  =  |^| { c  e.  ( cf `  A )  |  r 
C_  ( h `  c ) }
15 eqid 2382 . . . . . . . 8  |- OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )  = OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )
1613, 14, 15cofsmo 8562 . . . . . . 7  |-  ( ( Ord  B  /\  ( cf `  A )  e.  On )  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
1711, 12, 16sylancl 660 . . . . . 6  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
18 3simpb 992 . . . . . . . . . . . 12  |-  ( ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  (
k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
) )
1918eximi 1664 . . . . . . . . . . 11  |-  ( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  E. k
( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )
2012onsuci 6572 . . . . . . . . . . . . 13  |-  suc  ( cf `  A )  e.  On
2120oneli 4899 . . . . . . . . . . . 12  |-  ( c  e.  suc  ( cf `  A )  ->  c  e.  On )
22 cfflb 8552 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  c  e.  On )  ->  ( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2321, 22sylan2 472 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2419, 23syl5 32 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  c ) )
2524imp 427 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  c )
26 onsssuc 4879 . . . . . . . . . . . 12  |-  ( ( c  e.  On  /\  ( cf `  A )  e.  On )  -> 
( c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2721, 12, 26sylancl 660 . . . . . . . . . . 11  |-  ( c  e.  suc  ( cf `  A )  ->  (
c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2827ibir 242 . . . . . . . . . 10  |-  ( c  e.  suc  ( cf `  A )  ->  c  C_  ( cf `  A
) )
2928ad2antlr 724 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
c  C_  ( cf `  A ) )
3025, 29sstrd 3427 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
3130exp31 602 . . . . . . 7  |-  ( B  e.  On  ->  (
c  e.  suc  ( cf `  A )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) ) )
3231rexlimdv 2872 . . . . . 6  |-  ( B  e.  On  ->  ( E. c  e.  suc  ( cf `  A ) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3317, 32syld 44 . . . . 5  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3410, 33sylan9 655 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3534imp 427 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
362, 35eqssd 3434 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  =  ( cf `  B ) )
3736ex 432 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399   E.wex 1620    e. wcel 1826   A.wral 2732   E.wrex 2733   {crab 2736    C_ wss 3389   |^|cint 4199    |-> cmpt 4425    _E cep 4703   Ord word 4791   Oncon0 4792   suc csuc 4794   -->wf 5492   -1-1->wf1 5493   ` cfv 5496   Smo wsmo 6934  OrdIsocoi 7849   cfccf 8231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-smo 6935  df-recs 6960  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-oi 7850  df-card 8233  df-cf 8235  df-acn 8236
This theorem is referenced by:  alephsing  8569
  Copyright terms: Public domain W3C validator