MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfcof Structured version   Visualization version   Unicode version

Theorem cfcof 8730
Description: If there is a cofinal map from  A to  B, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof  ( A ,  B ) and defines our  cf ( B ) as the minimum  B such that cof  ( A ,  B
). (Contributed by Mario Carneiro, 20-Mar-2013.)
Assertion
Ref Expression
cfcof  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Distinct variable groups:    w, f,
z, A    B, f, w, z

Proof of Theorem cfcof
Dummy variables  c 
g  h  k  r  s  t  x  y  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfcoflem 8728 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  C_  ( cf `  B ) ) )
21imp 435 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  C_  ( cf `  B ) )
3 cff1 8714 . . . . . . 7  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A )
-1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
4 f1f 5802 . . . . . . . . 9  |-  ( g : ( cf `  A
) -1-1-> A  ->  g : ( cf `  A
) --> A )
54anim1i 576 . . . . . . . 8  |-  ( ( g : ( cf `  A ) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  (
g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) ) )
65eximi 1718 . . . . . . 7  |-  ( E. g ( g : ( cf `  A
) -1-1-> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
)  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
73, 6syl 17 . . . . . 6  |-  ( A  e.  On  ->  E. g
( g : ( cf `  A ) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A
) s  C_  (
g `  t )
) )
8 eqid 2462 . . . . . . 7  |-  ( y  e.  ( cf `  A
)  |->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )  =  ( y  e.  ( cf `  A ) 
|->  |^| { v  e.  B  |  ( g `
 y )  C_  ( f `  v
) } )
98coftr 8729 . . . . . 6  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  ( E. g ( g : ( cf `  A
) --> A  /\  A. s  e.  A  E. t  e.  ( cf `  A ) s  C_  ( g `  t
) )  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
107, 9syl5com 31 . . . . 5  |-  ( A  e.  On  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )
)  ->  E. h
( h : ( cf `  A ) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A
) r  C_  (
h `  t )
) ) )
11 eloni 5452 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
12 cfon 8711 . . . . . . 7  |-  ( cf `  A )  e.  On
13 eqid 2462 . . . . . . . 8  |-  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }  =  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) }
14 eqid 2462 . . . . . . . 8  |-  |^| { c  e.  ( cf `  A
)  |  r  C_  ( h `  c
) }  =  |^| { c  e.  ( cf `  A )  |  r 
C_  ( h `  c ) }
15 eqid 2462 . . . . . . . 8  |- OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )  = OrdIso (  _E  ,  { x  e.  ( cf `  A
)  |  A. t  e.  x  ( h `  t )  e.  ( h `  x ) } )
1613, 14, 15cofsmo 8725 . . . . . . 7  |-  ( ( Ord  B  /\  ( cf `  A )  e.  On )  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
1711, 12, 16sylancl 673 . . . . . 6  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  E. c  e.  suc  ( cf `  A
) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) ) )
18 3simpb 1012 . . . . . . . . . . . 12  |-  ( ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  (
k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
) )
1918eximi 1718 . . . . . . . . . . 11  |-  ( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  E. k
( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )
2012onsuci 6692 . . . . . . . . . . . . 13  |-  suc  ( cf `  A )  e.  On
2120oneli 5549 . . . . . . . . . . . 12  |-  ( c  e.  suc  ( cf `  A )  ->  c  e.  On )
22 cfflb 8715 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  c  e.  On )  ->  ( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2321, 22sylan2 481 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  A. r  e.  B  E. s  e.  c  r  C_  (
k `  s )
)  ->  ( cf `  B )  C_  c
) )
2419, 23syl5 33 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  c ) )
2524imp 435 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  c )
26 onsssuc 5529 . . . . . . . . . . . 12  |-  ( ( c  e.  On  /\  ( cf `  A )  e.  On )  -> 
( c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2721, 12, 26sylancl 673 . . . . . . . . . . 11  |-  ( c  e.  suc  ( cf `  A )  ->  (
c  C_  ( cf `  A )  <->  c  e.  suc  ( cf `  A
) ) )
2827ibir 250 . . . . . . . . . 10  |-  ( c  e.  suc  ( cf `  A )  ->  c  C_  ( cf `  A
) )
2928ad2antlr 738 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
c  C_  ( cf `  A ) )
3025, 29sstrd 3454 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  c  e.  suc  ( cf `  A ) )  /\  E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
3130exp31 613 . . . . . . 7  |-  ( B  e.  On  ->  (
c  e.  suc  ( cf `  A )  -> 
( E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) ) )
3231rexlimdv 2889 . . . . . 6  |-  ( B  e.  On  ->  ( E. c  e.  suc  ( cf `  A ) E. k ( k : c --> B  /\  Smo  k  /\  A. r  e.  B  E. s  e.  c  r  C_  ( k `  s
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3317, 32syld 45 . . . . 5  |-  ( B  e.  On  ->  ( E. h ( h : ( cf `  A
) --> B  /\  A. r  e.  B  E. t  e.  ( cf `  A ) r  C_  ( h `  t
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3410, 33sylan9 667 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  B )  C_  ( cf `  A ) ) )
3534imp 435 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  B
)  C_  ( cf `  A ) )
362, 35eqssd 3461 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  =  ( cf `  B ) )
3736ex 440 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  Smo  f  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  =  ( cf `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455   E.wex 1674    e. wcel 1898   A.wral 2749   E.wrex 2750   {crab 2753    C_ wss 3416   |^|cint 4248    |-> cmpt 4475    _E cep 4762   Ord word 5441   Oncon0 5442   suc csuc 5444   -->wf 5597   -1-1->wf1 5598   ` cfv 5601   Smo wsmo 7090  OrdIsocoi 8050   cfccf 8397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-smo 7091  df-recs 7116  df-er 7389  df-map 7500  df-en 7596  df-dom 7597  df-sdom 7598  df-oi 8051  df-card 8399  df-cf 8401  df-acn 8402
This theorem is referenced by:  alephsing  8732
  Copyright terms: Public domain W3C validator