Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem1 Structured version   Unicode version

Theorem cevathlem1 31865
Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevathlem1.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
cevathlem1.b  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC  /\  F  e.  CC )
)
cevathlem1.c  |-  ( ph  ->  ( G  e.  CC  /\  H  e.  CC  /\  K  e.  CC )
)
cevathlem1.d  |-  ( ph  ->  ( A  =/=  0  /\  E  =/=  0  /\  C  =/=  0
) )
cevathlem1.e  |-  ( ph  ->  ( ( A  x.  B )  =  ( C  x.  D )  /\  ( E  x.  F )  =  ( A  x.  G )  /\  ( C  x.  H )  =  ( E  x.  K ) ) )
Assertion
Ref Expression
cevathlem1  |-  ( ph  ->  ( ( B  x.  F )  x.  H
)  =  ( ( D  x.  G )  x.  K ) )

Proof of Theorem cevathlem1
StepHypRef Expression
1 cevathlem1.a . . . . 5  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
21simp2d 1009 . . . 4  |-  ( ph  ->  B  e.  CC )
3 cevathlem1.b . . . . 5  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC  /\  F  e.  CC )
)
43simp3d 1010 . . . 4  |-  ( ph  ->  F  e.  CC )
52, 4mulcld 9628 . . 3  |-  ( ph  ->  ( B  x.  F
)  e.  CC )
6 cevathlem1.c . . . 4  |-  ( ph  ->  ( G  e.  CC  /\  H  e.  CC  /\  K  e.  CC )
)
76simp2d 1009 . . 3  |-  ( ph  ->  H  e.  CC )
85, 7mulcld 9628 . 2  |-  ( ph  ->  ( ( B  x.  F )  x.  H
)  e.  CC )
93simp1d 1008 . . . 4  |-  ( ph  ->  D  e.  CC )
106simp1d 1008 . . . 4  |-  ( ph  ->  G  e.  CC )
119, 10mulcld 9628 . . 3  |-  ( ph  ->  ( D  x.  G
)  e.  CC )
126simp3d 1010 . . 3  |-  ( ph  ->  K  e.  CC )
1311, 12mulcld 9628 . 2  |-  ( ph  ->  ( ( D  x.  G )  x.  K
)  e.  CC )
141simp1d 1008 . . . 4  |-  ( ph  ->  A  e.  CC )
153simp2d 1009 . . . 4  |-  ( ph  ->  E  e.  CC )
1614, 15mulcld 9628 . . 3  |-  ( ph  ->  ( A  x.  E
)  e.  CC )
171simp3d 1010 . . 3  |-  ( ph  ->  C  e.  CC )
1816, 17mulcld 9628 . 2  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  e.  CC )
19 cevathlem1.d . . . . 5  |-  ( ph  ->  ( A  =/=  0  /\  E  =/=  0  /\  C  =/=  0
) )
2019simp1d 1008 . . . 4  |-  ( ph  ->  A  =/=  0 )
2119simp2d 1009 . . . 4  |-  ( ph  ->  E  =/=  0 )
2214, 15, 20, 21mulne0d 10213 . . 3  |-  ( ph  ->  ( A  x.  E
)  =/=  0 )
2319simp3d 1010 . . 3  |-  ( ph  ->  C  =/=  0 )
2416, 17, 22, 23mulne0d 10213 . 2  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  =/=  0 )
25 cevathlem1.e . . . . . . . 8  |-  ( ph  ->  ( ( A  x.  B )  =  ( C  x.  D )  /\  ( E  x.  F )  =  ( A  x.  G )  /\  ( C  x.  H )  =  ( E  x.  K ) ) )
2625simp1d 1008 . . . . . . 7  |-  ( ph  ->  ( A  x.  B
)  =  ( C  x.  D ) )
2725simp2d 1009 . . . . . . 7  |-  ( ph  ->  ( E  x.  F
)  =  ( A  x.  G ) )
2826, 27oveq12d 6313 . . . . . 6  |-  ( ph  ->  ( ( A  x.  B )  x.  ( E  x.  F )
)  =  ( ( C  x.  D )  x.  ( A  x.  G ) ) )
2914, 2, 15, 4mul4d 9803 . . . . . 6  |-  ( ph  ->  ( ( A  x.  B )  x.  ( E  x.  F )
)  =  ( ( A  x.  E )  x.  ( B  x.  F ) ) )
3017, 9, 14, 10mul4d 9803 . . . . . 6  |-  ( ph  ->  ( ( C  x.  D )  x.  ( A  x.  G )
)  =  ( ( C  x.  A )  x.  ( D  x.  G ) ) )
3128, 29, 303eqtr3d 2516 . . . . 5  |-  ( ph  ->  ( ( A  x.  E )  x.  ( B  x.  F )
)  =  ( ( C  x.  A )  x.  ( D  x.  G ) ) )
3225simp3d 1010 . . . . 5  |-  ( ph  ->  ( C  x.  H
)  =  ( E  x.  K ) )
3331, 32oveq12d 6313 . . . 4  |-  ( ph  ->  ( ( ( A  x.  E )  x.  ( B  x.  F
) )  x.  ( C  x.  H )
)  =  ( ( ( C  x.  A
)  x.  ( D  x.  G ) )  x.  ( E  x.  K ) ) )
3416, 5, 17, 7mul4d 9803 . . . 4  |-  ( ph  ->  ( ( ( A  x.  E )  x.  ( B  x.  F
) )  x.  ( C  x.  H )
)  =  ( ( ( A  x.  E
)  x.  C )  x.  ( ( B  x.  F )  x.  H ) ) )
3517, 14mulcld 9628 . . . . 5  |-  ( ph  ->  ( C  x.  A
)  e.  CC )
3635, 11, 15, 12mul4d 9803 . . . 4  |-  ( ph  ->  ( ( ( C  x.  A )  x.  ( D  x.  G
) )  x.  ( E  x.  K )
)  =  ( ( ( C  x.  A
)  x.  E )  x.  ( ( D  x.  G )  x.  K ) ) )
3733, 34, 363eqtr3d 2516 . . 3  |-  ( ph  ->  ( ( ( A  x.  E )  x.  C )  x.  (
( B  x.  F
)  x.  H ) )  =  ( ( ( C  x.  A
)  x.  E )  x.  ( ( D  x.  G )  x.  K ) ) )
3814, 15, 17mul32d 9801 . . . . 5  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  =  ( ( A  x.  C )  x.  E ) )
3914, 17mulcomd 9629 . . . . . 6  |-  ( ph  ->  ( A  x.  C
)  =  ( C  x.  A ) )
4039oveq1d 6310 . . . . 5  |-  ( ph  ->  ( ( A  x.  C )  x.  E
)  =  ( ( C  x.  A )  x.  E ) )
4138, 40eqtrd 2508 . . . 4  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  =  ( ( C  x.  A )  x.  E ) )
4241oveq1d 6310 . . 3  |-  ( ph  ->  ( ( ( A  x.  E )  x.  C )  x.  (
( D  x.  G
)  x.  K ) )  =  ( ( ( C  x.  A
)  x.  E )  x.  ( ( D  x.  G )  x.  K ) ) )
4337, 42eqtr4d 2511 . 2  |-  ( ph  ->  ( ( ( A  x.  E )  x.  C )  x.  (
( B  x.  F
)  x.  H ) )  =  ( ( ( A  x.  E
)  x.  C )  x.  ( ( D  x.  G )  x.  K ) ) )
448, 13, 18, 24, 43mulcanad 10196 1  |-  ( ph  ->  ( ( B  x.  F )  x.  H
)  =  ( ( D  x.  G )  x.  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662  (class class class)co 6295   CCcc 9502   0cc0 9504    x. cmul 9509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820
This theorem is referenced by:  cevath  31867
  Copyright terms: Public domain W3C validator