Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevath Unicode version

Theorem cevath 27529
Description: Ceva's theorem. Let  A B C be a triangle and let points  F,  D and  E lie on sides  A B,  B C,  C A correspondingly. Suppose that cevians  A D,  B E and  C F intersect at one point  O. Then triangle's sides are partitioned into segments and their lengths satisfy a certain identity. Here we obtain a bit stronger version by using complex numbers themselves instead of their absolute values.

The proof goes by applying cevathlem2 27528 three times and then using cevathlem1 27527 to multiply obtained identities and prove the theorem.

In the theorem statement we are using function  G as a collinearity indicator. For justification of that use, see sigarcol 27524. (Contributed by Saveliy Skresanov, 24-Sep-2017.)

Hypotheses
Ref Expression
cevath.sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
cevath.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
cevath.b  |-  ( ph  ->  ( F  e.  CC  /\  D  e.  CC  /\  E  e.  CC )
)
cevath.c  |-  ( ph  ->  O  e.  CC )
cevath.d  |-  ( ph  ->  ( ( ( A  -  O ) G ( D  -  O
) )  =  0  /\  ( ( B  -  O ) G ( E  -  O
) )  =  0  /\  ( ( C  -  O ) G ( F  -  O
) )  =  0 ) )
cevath.e  |-  ( ph  ->  ( ( ( A  -  F ) G ( B  -  F
) )  =  0  /\  ( ( B  -  D ) G ( C  -  D
) )  =  0  /\  ( ( C  -  E ) G ( A  -  E
) )  =  0 ) )
cevath.f  |-  ( ph  ->  ( ( ( A  -  O ) G ( B  -  O
) )  =/=  0  /\  ( ( B  -  O ) G ( C  -  O ) )  =/=  0  /\  ( ( C  -  O ) G ( A  -  O ) )  =/=  0 ) )
Assertion
Ref Expression
cevath  |-  ( ph  ->  ( ( ( A  -  F )  x.  ( C  -  E
) )  x.  ( B  -  D )
)  =  ( ( ( F  -  B
)  x.  ( E  -  A ) )  x.  ( D  -  C ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y   
x, O, y    x, E, y    x, F, y
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem cevath
StepHypRef Expression
1 cevath.sigar . . . 4  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
2 cevath.a . . . . . . 7  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
32simp2d 970 . . . . . 6  |-  ( ph  ->  B  e.  CC )
4 cevath.c . . . . . 6  |-  ( ph  ->  O  e.  CC )
53, 4subcld 9345 . . . . 5  |-  ( ph  ->  ( B  -  O
)  e.  CC )
62simp3d 971 . . . . . 6  |-  ( ph  ->  C  e.  CC )
76, 4subcld 9345 . . . . 5  |-  ( ph  ->  ( C  -  O
)  e.  CC )
85, 7jca 519 . . . 4  |-  ( ph  ->  ( ( B  -  O )  e.  CC  /\  ( C  -  O
)  e.  CC ) )
91, 8sigarimcd 27522 . . 3  |-  ( ph  ->  ( ( B  -  O ) G ( C  -  O ) )  e.  CC )
102simp1d 969 . . . 4  |-  ( ph  ->  A  e.  CC )
11 cevath.b . . . . 5  |-  ( ph  ->  ( F  e.  CC  /\  D  e.  CC  /\  E  e.  CC )
)
1211simp1d 969 . . . 4  |-  ( ph  ->  F  e.  CC )
1310, 12subcld 9345 . . 3  |-  ( ph  ->  ( A  -  F
)  e.  CC )
1410, 4subcld 9345 . . . . 5  |-  ( ph  ->  ( A  -  O
)  e.  CC )
157, 14jca 519 . . . 4  |-  ( ph  ->  ( ( C  -  O )  e.  CC  /\  ( A  -  O
)  e.  CC ) )
161, 15sigarimcd 27522 . . 3  |-  ( ph  ->  ( ( C  -  O ) G ( A  -  O ) )  e.  CC )
179, 13, 163jca 1134 . 2  |-  ( ph  ->  ( ( ( B  -  O ) G ( C  -  O
) )  e.  CC  /\  ( A  -  F
)  e.  CC  /\  ( ( C  -  O ) G ( A  -  O ) )  e.  CC ) )
1812, 3subcld 9345 . . 3  |-  ( ph  ->  ( F  -  B
)  e.  CC )
1914, 5jca 519 . . . 4  |-  ( ph  ->  ( ( A  -  O )  e.  CC  /\  ( B  -  O
)  e.  CC ) )
201, 19sigarimcd 27522 . . 3  |-  ( ph  ->  ( ( A  -  O ) G ( B  -  O ) )  e.  CC )
2111simp3d 971 . . . 4  |-  ( ph  ->  E  e.  CC )
226, 21subcld 9345 . . 3  |-  ( ph  ->  ( C  -  E
)  e.  CC )
2318, 20, 223jca 1134 . 2  |-  ( ph  ->  ( ( F  -  B )  e.  CC  /\  ( ( A  -  O ) G ( B  -  O ) )  e.  CC  /\  ( C  -  E
)  e.  CC ) )
2421, 10subcld 9345 . . 3  |-  ( ph  ->  ( E  -  A
)  e.  CC )
2511simp2d 970 . . . 4  |-  ( ph  ->  D  e.  CC )
263, 25subcld 9345 . . 3  |-  ( ph  ->  ( B  -  D
)  e.  CC )
2725, 6subcld 9345 . . 3  |-  ( ph  ->  ( D  -  C
)  e.  CC )
2824, 26, 273jca 1134 . 2  |-  ( ph  ->  ( ( E  -  A )  e.  CC  /\  ( B  -  D
)  e.  CC  /\  ( D  -  C
)  e.  CC ) )
29 cevath.f . . . 4  |-  ( ph  ->  ( ( ( A  -  O ) G ( B  -  O
) )  =/=  0  /\  ( ( B  -  O ) G ( C  -  O ) )  =/=  0  /\  ( ( C  -  O ) G ( A  -  O ) )  =/=  0 ) )
3029simp2d 970 . . 3  |-  ( ph  ->  ( ( B  -  O ) G ( C  -  O ) )  =/=  0 )
3129simp1d 969 . . 3  |-  ( ph  ->  ( ( A  -  O ) G ( B  -  O ) )  =/=  0 )
3229simp3d 971 . . 3  |-  ( ph  ->  ( ( C  -  O ) G ( A  -  O ) )  =/=  0 )
3330, 31, 323jca 1134 . 2  |-  ( ph  ->  ( ( ( B  -  O ) G ( C  -  O
) )  =/=  0  /\  ( ( A  -  O ) G ( B  -  O ) )  =/=  0  /\  ( ( C  -  O ) G ( A  -  O ) )  =/=  0 ) )
346, 10, 33jca 1134 . . . 4  |-  ( ph  ->  ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )
)
3521, 12, 253jca 1134 . . . 4  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  D  e.  CC )
)
36 cevath.d . . . . . 6  |-  ( ph  ->  ( ( ( A  -  O ) G ( D  -  O
) )  =  0  /\  ( ( B  -  O ) G ( E  -  O
) )  =  0  /\  ( ( C  -  O ) G ( F  -  O
) )  =  0 ) )
3736simp3d 971 . . . . 5  |-  ( ph  ->  ( ( C  -  O ) G ( F  -  O ) )  =  0 )
3836simp1d 969 . . . . 5  |-  ( ph  ->  ( ( A  -  O ) G ( D  -  O ) )  =  0 )
3936simp2d 970 . . . . 5  |-  ( ph  ->  ( ( B  -  O ) G ( E  -  O ) )  =  0 )
4037, 38, 393jca 1134 . . . 4  |-  ( ph  ->  ( ( ( C  -  O ) G ( F  -  O
) )  =  0  /\  ( ( A  -  O ) G ( D  -  O
) )  =  0  /\  ( ( B  -  O ) G ( E  -  O
) )  =  0 ) )
41 cevath.e . . . . . 6  |-  ( ph  ->  ( ( ( A  -  F ) G ( B  -  F
) )  =  0  /\  ( ( B  -  D ) G ( C  -  D
) )  =  0  /\  ( ( C  -  E ) G ( A  -  E
) )  =  0 ) )
4241simp3d 971 . . . . 5  |-  ( ph  ->  ( ( C  -  E ) G ( A  -  E ) )  =  0 )
4341simp1d 969 . . . . 5  |-  ( ph  ->  ( ( A  -  F ) G ( B  -  F ) )  =  0 )
4441simp2d 970 . . . . 5  |-  ( ph  ->  ( ( B  -  D ) G ( C  -  D ) )  =  0 )
4542, 43, 443jca 1134 . . . 4  |-  ( ph  ->  ( ( ( C  -  E ) G ( A  -  E
) )  =  0  /\  ( ( A  -  F ) G ( B  -  F
) )  =  0  /\  ( ( B  -  D ) G ( C  -  D
) )  =  0 ) )
4632, 31, 303jca 1134 . . . 4  |-  ( ph  ->  ( ( ( C  -  O ) G ( A  -  O
) )  =/=  0  /\  ( ( A  -  O ) G ( B  -  O ) )  =/=  0  /\  ( ( B  -  O ) G ( C  -  O ) )  =/=  0 ) )
471, 34, 35, 4, 40, 45, 46cevathlem2 27528 . . 3  |-  ( ph  ->  ( ( ( B  -  O ) G ( C  -  O
) )  x.  ( A  -  F )
)  =  ( ( ( C  -  O
) G ( A  -  O ) )  x.  ( F  -  B ) ) )
483, 6, 103jca 1134 . . . 4  |-  ( ph  ->  ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC )
)
4925, 21, 123jca 1134 . . . 4  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC  /\  F  e.  CC )
)
5039, 37, 383jca 1134 . . . 4  |-  ( ph  ->  ( ( ( B  -  O ) G ( E  -  O
) )  =  0  /\  ( ( C  -  O ) G ( F  -  O
) )  =  0  /\  ( ( A  -  O ) G ( D  -  O
) )  =  0 ) )
5144, 42, 433jca 1134 . . . 4  |-  ( ph  ->  ( ( ( B  -  D ) G ( C  -  D
) )  =  0  /\  ( ( C  -  E ) G ( A  -  E
) )  =  0  /\  ( ( A  -  F ) G ( B  -  F
) )  =  0 ) )
5230, 32, 313jca 1134 . . . 4  |-  ( ph  ->  ( ( ( B  -  O ) G ( C  -  O
) )  =/=  0  /\  ( ( C  -  O ) G ( A  -  O ) )  =/=  0  /\  ( ( A  -  O ) G ( B  -  O ) )  =/=  0 ) )
531, 48, 49, 4, 50, 51, 52cevathlem2 27528 . . 3  |-  ( ph  ->  ( ( ( A  -  O ) G ( B  -  O
) )  x.  ( C  -  E )
)  =  ( ( ( B  -  O
) G ( C  -  O ) )  x.  ( E  -  A ) ) )
541, 2, 11, 4, 36, 41, 29cevathlem2 27528 . . 3  |-  ( ph  ->  ( ( ( C  -  O ) G ( A  -  O
) )  x.  ( B  -  D )
)  =  ( ( ( A  -  O
) G ( B  -  O ) )  x.  ( D  -  C ) ) )
5547, 53, 543jca 1134 . 2  |-  ( ph  ->  ( ( ( ( B  -  O ) G ( C  -  O ) )  x.  ( A  -  F
) )  =  ( ( ( C  -  O ) G ( A  -  O ) )  x.  ( F  -  B ) )  /\  ( ( ( A  -  O ) G ( B  -  O ) )  x.  ( C  -  E
) )  =  ( ( ( B  -  O ) G ( C  -  O ) )  x.  ( E  -  A ) )  /\  ( ( ( C  -  O ) G ( A  -  O ) )  x.  ( B  -  D
) )  =  ( ( ( A  -  O ) G ( B  -  O ) )  x.  ( D  -  C ) ) ) )
5617, 23, 28, 33, 55cevathlem1 27527 1  |-  ( ph  ->  ( ( ( A  -  F )  x.  ( C  -  E
) )  x.  ( B  -  D )
)  =  ( ( ( F  -  B
)  x.  ( E  -  A ) )  x.  ( D  -  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   ` cfv 5396  (class class class)co 6022    e. cmpt2 6024   CCcc 8923   0cc0 8925    x. cmul 8930    - cmin 9225   *ccj 11830   Imcim 11832
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-po 4446  df-so 4447  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-riota 6487  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-2 9992  df-cj 11833  df-re 11834  df-im 11835
  Copyright terms: Public domain W3C validator