Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexv Structured version   Unicode version

Theorem ceqsrexv 3217
 Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1
Assertion
Ref Expression
ceqsrexv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 2797 . . 3
2 an12 795 . . . 4
32exbii 1652 . . 3
41, 3bitr4i 252 . 2
5 eleq1 2513 . . . . 5
6 ceqsrexv.1 . . . . 5
75, 6anbi12d 710 . . . 4
87ceqsexgv 3216 . . 3
98bianabs 878 . 2
104, 9syl5bb 257 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1381  wex 1597   wcel 1802  wrex 2792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-12 1838  ax-13 1983  ax-ext 2419 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-rex 2797  df-v 3095 This theorem is referenced by:  ceqsrexbv  3218  ceqsrex2v  3219  reuxfr2d  4656  f1oiso  6228  creur  10531  creui  10532  deg1ldg  22358  ulm2  22645  reuxfr3d  27253  rmxdiophlem  30925  expdiophlem1  30931  expdiophlem2  30932  eqlkr3  34528  diclspsn  36623
 Copyright terms: Public domain W3C validator