MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexbv Structured version   Unicode version

Theorem ceqsrexbv 3231
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypothesis
Ref Expression
ceqsrexv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsrexbv  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ( A  e.  B  /\  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsrexbv
StepHypRef Expression
1 r19.42v 3009 . 2  |-  ( E. x  e.  B  ( A  e.  B  /\  ( x  =  A  /\  ph ) )  <->  ( A  e.  B  /\  E. x  e.  B  ( x  =  A  /\  ph )
) )
2 eleq1 2532 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
32adantr 465 . . . . . 6  |-  ( ( x  =  A  /\  ph )  ->  ( x  e.  B  <->  A  e.  B
) )
43pm5.32ri 638 . . . . 5  |-  ( ( x  e.  B  /\  ( x  =  A  /\  ph ) )  <->  ( A  e.  B  /\  (
x  =  A  /\  ph ) ) )
54bicomi 202 . . . 4  |-  ( ( A  e.  B  /\  ( x  =  A  /\  ph ) )  <->  ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
65baib 898 . . 3  |-  ( x  e.  B  ->  (
( A  e.  B  /\  ( x  =  A  /\  ph ) )  <-> 
( x  =  A  /\  ph ) ) )
76rexbiia 2957 . 2  |-  ( E. x  e.  B  ( A  e.  B  /\  ( x  =  A  /\  ph ) )  <->  E. x  e.  B  ( x  =  A  /\  ph )
)
8 ceqsrexv.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
98ceqsrexv 3230 . . 3  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
109pm5.32i 637 . 2  |-  ( ( A  e.  B  /\  E. x  e.  B  ( x  =  A  /\  ph ) )  <->  ( A  e.  B  /\  ps )
)
111, 7, 103bitr3i 275 1  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ( A  e.  B  /\  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-rex 2813  df-v 3108
This theorem is referenced by:  marypha2lem2  7885  txkgen  19881  ceqsrexv2  28426  eq0rabdioph  30165
  Copyright terms: Public domain W3C validator