Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralv Structured version   Unicode version

Theorem ceqsralv 3101
 Description: Restricted quantifier version of ceqsalv 3100. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2
Assertion
Ref Expression
ceqsralv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1674 . 2
2 ceqsralv.2 . . 3
32ax-gen 1592 . 2
4 ceqsralt 3096 . 2
51, 3, 4mp3an12 1305 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1368   wceq 1370  wnf 1590   wcel 1758  wral 2796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794  ax-ext 2431 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-ral 2801  df-v 3074 This theorem is referenced by:  eqreu  3252  sqr2irr  13644  acsfn  14711  ovolgelb  21090
 Copyright terms: Public domain W3C validator