Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralt Structured version   Unicode version

Theorem ceqsralt 3047
 Description: Restricted quantifier version of ceqsalt 3046. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsralt
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ceqsralt
StepHypRef Expression
1 df-ral 2719 . . . 4
2 eleq1 2494 . . . . . . . . 9
32pm5.32ri 642 . . . . . . . 8
43imbi1i 326 . . . . . . 7
5 impexp 447 . . . . . . 7
6 impexp 447 . . . . . . 7
74, 5, 63bitr3i 278 . . . . . 6
87albii 1685 . . . . 5
98a1i 11 . . . 4
101, 9syl5bb 260 . . 3
11 19.21v 1779 . . 3
1210, 11syl6bb 264 . 2
13 biimt 336 . . 3
14133ad2ant3 1028 . 2
15 ceqsalt 3046 . 2
1612, 14, 153bitr2d 284 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370   w3a 982  wal 1435   wceq 1437  wnf 1661   wcel 1872  wral 2714 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-12 1909  ax-ext 2408 This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2415  df-cleq 2421  df-clel 2424  df-ral 2719  df-v 3024 This theorem is referenced by:  ceqsralv  3052  cdleme32fva  33916
 Copyright terms: Public domain W3C validator