Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ceqsexv2d Structured version   Unicode version

Theorem ceqsexv2d 27524
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.)
Hypotheses
Ref Expression
ceqsexv2d.1  |-  A  e. 
_V
ceqsexv2d.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsexv2d.3  |-  ps
Assertion
Ref Expression
ceqsexv2d  |-  E. x ph
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsexv2d
StepHypRef Expression
1 ceqsexv2d.3 . 2  |-  ps
2 ceqsexv2d.1 . . . 4  |-  A  e. 
_V
3 ceqsexv2d.2 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
42, 3ceqsexv 3146 . . 3  |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
54biimpri 206 . 2  |-  ( ps 
->  E. x ( x  =  A  /\  ph ) )
6 exsimpr 1679 . 2  |-  ( E. x ( x  =  A  /\  ph )  ->  E. x ph )
71, 5, 6mp2b 10 1  |-  E. x ph
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819   _Vcvv 3109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-12 1855  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator