Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexgv Structured version   Unicode version

Theorem ceqsexgv 3216
 Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
Hypothesis
Ref Expression
ceqsexgv.1
Assertion
Ref Expression
ceqsexgv
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ceqsexgv
StepHypRef Expression
1 nfv 1692 . 2
2 ceqsexgv.1 . 2
31, 2ceqsexg 3215 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1381  wex 1597   wcel 1802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-12 1838  ax-13 1983  ax-ext 2419 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-v 3095 This theorem is referenced by:  ceqsrexv  3217  clel3g  3221  elxp5  6726  xpsnen  7599  isssc  15061  metuel2  20948  isgrpo  25063  ismgmOLD  25187  ceqsex3vOLD  30570  bj-finsumval0  34365  pmapjat1  35279
 Copyright terms: Public domain W3C validator