MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexgv Structured version   Unicode version

Theorem ceqsexgv 3229
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
Hypothesis
Ref Expression
ceqsexgv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsexgv  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ceqsexgv
StepHypRef Expression
1 nfv 1712 . 2  |-  F/ x ps
2 ceqsexgv.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
31, 2ceqsexg 3228 1  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-v 3108
This theorem is referenced by:  ceqsrexv  3230  clel3g  3234  elxp5  6718  xpsnen  7594  isssc  15311  metuel2  21251  isgrpo  25399  ismgmOLD  25523  ceqsex3vOLD  30845  bj-finsumval0  35082  pmapjat1  35993
  Copyright terms: Public domain W3C validator