MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex2v Structured version   Visualization version   Unicode version

Theorem ceqsex2v 3089
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2v.1  |-  A  e. 
_V
ceqsex2v.2  |-  B  e. 
_V
ceqsex2v.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsex2v.4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ceqsex2v  |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
Distinct variable groups:    x, y, A    x, B, y    ps, x    ch, y
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x)

Proof of Theorem ceqsex2v
StepHypRef Expression
1 nfv 1763 . 2  |-  F/ x ps
2 nfv 1763 . 2  |-  F/ y ch
3 ceqsex2v.1 . 2  |-  A  e. 
_V
4 ceqsex2v.2 . 2  |-  B  e. 
_V
5 ceqsex2v.3 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
6 ceqsex2v.4 . 2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
71, 2, 3, 4, 5, 6ceqsex2 3088 1  |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ w3a 986    = wceq 1446   E.wex 1665    e. wcel 1889   _Vcvv 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-ext 2433
This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-v 3049
This theorem is referenced by:  ceqsex3v  3090  ceqsex4v  3091  ispos  16204  elfuns  30694  brimg  30716  brapply  30717  brsuccf  30720  brrestrict  30728  dfrdg4  30730  diblsmopel  34751
  Copyright terms: Public domain W3C validator