Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalv Structured version   Unicode version

Theorem ceqsalv 3141
 Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsalv.1
ceqsalv.2
Assertion
Ref Expression
ceqsalv
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ceqsalv
StepHypRef Expression
1 nfv 1683 . 2
2 ceqsalv.1 . 2
3 ceqsalv.2 . 2
41, 2, 3ceqsal 3140 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1377   wceq 1379   wcel 1767  cvv 3113 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-12 1803  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-v 3115 This theorem is referenced by:  ralxpxfr2d  3228  clel2  3240  clel4  3243  reu8  3299  frsn  5069  raliunxp  5140  fv3  5877  funimass4  5916  marypha2lem3  7893  kmlem12  8537  fpwwe2lem12  9015  vdwmc2  14352  itg2leub  21876  nmoubi  25363  choc0  25920  nmopub  26503  nmfnleub  26520  heibor1lem  29908
 Copyright terms: Public domain W3C validator