MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalt Structured version   Visualization version   Unicode version

Theorem ceqsalt 3038
Description: Closed theorem version of ceqsalg 3040. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsalt  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem ceqsalt
StepHypRef Expression
1 elisset 3025 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
213ad2ant3 1032 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  E. x  x  =  A )
3 biimp 198 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
43imim3i 61 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( ( x  =  A  ->  ph )  -> 
( x  =  A  ->  ps ) ) )
54al2imi 1691 . . . . 5  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A. x ( x  =  A  ->  ph )  ->  A. x ( x  =  A  ->  ps )
) )
653ad2ant2 1031 . . . 4  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  ->  A. x ( x  =  A  ->  ps )
) )
7 19.23t 1996 . . . . 5  |-  ( F/ x ps  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
873ad2ant1 1030 . . . 4  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
96, 8sylibd 222 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  -> 
( E. x  x  =  A  ->  ps ) ) )
102, 9mpid 42 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  ->  ps ) )
11 biimpr 203 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
1211imim2i 16 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ps  ->  ph ) ) )
1312com23 81 . . . . 5  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( ps  ->  (
x  =  A  ->  ph ) ) )
1413alimi 1688 . . . 4  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( ps  ->  (
x  =  A  ->  ph ) ) )
15143ad2ant2 1031 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  A. x
( ps  ->  (
x  =  A  ->  ph ) ) )
16 19.21t 1991 . . . 4  |-  ( F/ x ps  ->  ( A. x ( ps  ->  ( x  =  A  ->  ph ) )  <->  ( ps  ->  A. x ( x  =  A  ->  ph )
) ) )
17163ad2ant1 1030 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( ps  ->  ( x  =  A  ->  ph ) )  <->  ( ps  ->  A. x ( x  =  A  ->  ph )
) ) )
1815, 17mpbid 215 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( ps  ->  A. x ( x  =  A  ->  ph )
) )
1910, 18impbid 195 1  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ w3a 986   A.wal 1446    = wceq 1448   E.wex 1667   F/wnf 1671    e. wcel 1891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-10 1919  ax-12 1937  ax-ext 2432
This theorem depends on definitions:  df-bi 190  df-an 377  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-clab 2439  df-cleq 2445  df-clel 2448  df-v 3015
This theorem is referenced by:  ceqsralt  3039  ceqsalg  3040
  Copyright terms: Public domain W3C validator