Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsal Structured version   Unicode version

Theorem ceqsal 3088
 Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsal.1
ceqsal.2
ceqsal.3
Assertion
Ref Expression
ceqsal
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ceqsal
StepHypRef Expression
1 ceqsal.2 . 2
2 ceqsal.1 . . 3
3 ceqsal.3 . . 3
42, 3ceqsalg 3086 . 2
51, 4ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 186  wal 1405   wceq 1407  wnf 1639   wcel 1844  cvv 3061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-12 1880  ax-ext 2382 This theorem depends on definitions:  df-bi 187  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-clab 2390  df-cleq 2396  df-clel 2399  df-v 3063 This theorem is referenced by:  ceqsalv  3089  aomclem6  35380
 Copyright terms: Public domain W3C validator