Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn9 Structured version   Unicode version

Theorem cdlemn9 35208
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b  |-  B  =  ( Base `  K
)
cdlemn8.l  |-  .<_  =  ( le `  K )
cdlemn8.a  |-  A  =  ( Atoms `  K )
cdlemn8.h  |-  H  =  ( LHyp `  K
)
cdlemn8.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn8.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn8.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn8.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdlemn8.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn8.s  |-  .+  =  ( +g  `  U )
cdlemn8.f  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
cdlemn8.g  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
Assertion
Ref Expression
cdlemn9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
g `  Q )  =  R )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    T, h    P, h    Q, h    h, W    R, h
Allowed substitution hints:    A( g, s)    B( g, s)    P( g, s)    .+ ( g, h, s)    Q( g, s)    R( g, s)    T( g, s)    U( g, h, s)    E( g, h, s)    F( g, h, s)    G( g, h, s)    H( g, s)    K( g, s)    .<_ ( g, s)    O( g, h, s)    W( g, s)

Proof of Theorem cdlemn9
StepHypRef Expression
1 cdlemn8.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemn8.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemn8.a . . . 4  |-  A  =  ( Atoms `  K )
4 cdlemn8.h . . . 4  |-  H  =  ( LHyp `  K
)
5 cdlemn8.p . . . 4  |-  P  =  ( ( oc `  K ) `  W
)
6 cdlemn8.o . . . 4  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
7 cdlemn8.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemn8.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
9 cdlemn8.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
10 cdlemn8.s . . . 4  |-  .+  =  ( +g  `  U )
11 cdlemn8.f . . . 4  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
12 cdlemn8.g . . . 4  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn8 35207 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( G  o.  `' F ) )
1413fveq1d 5804 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
g `  Q )  =  ( ( G  o.  `' F ) `
 Q ) )
15 simp1 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
162, 3, 4, 5lhpocnel2 34021 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
17163ad2ant1 1009 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
18 simp2l 1014 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
192, 3, 4, 7, 11ltrniotacl 34581 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
2015, 17, 18, 19syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  F  e.  T )
211, 4, 7ltrn1o 34126 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
2215, 20, 21syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  F : B -1-1-onto-> B )
23 f1ocnv 5764 . . . 4  |-  ( F : B -1-1-onto-> B  ->  `' F : B -1-1-onto-> B )
24 f1of 5752 . . . 4  |-  ( `' F : B -1-1-onto-> B  ->  `' F : B --> B )
2522, 23, 243syl 20 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  `' F : B --> B )
26 simp2ll 1055 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  Q  e.  A )
271, 3atbase 33292 . . . 4  |-  ( Q  e.  A  ->  Q  e.  B )
2826, 27syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  Q  e.  B )
29 fvco3 5880 . . 3  |-  ( ( `' F : B --> B  /\  Q  e.  B )  ->  ( ( G  o.  `' F ) `  Q
)  =  ( G `
 ( `' F `  Q ) ) )
3025, 28, 29syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
( G  o.  `' F ) `  Q
)  =  ( G `
 ( `' F `  Q ) ) )
312, 3, 4, 7, 11ltrniotacnvval 34584 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( `' F `  Q )  =  P )
3215, 17, 18, 31syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( `' F `  Q )  =  P )
3332fveq2d 5806 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( G `  ( `' F `  Q )
)  =  ( G `
 P ) )
34 simp2r 1015 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
352, 3, 4, 7, 12ltrniotaval 34583 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( G `  P )  =  R )
3615, 17, 34, 35syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( G `  P )  =  R )
3733, 36eqtrd 2495 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( G `  ( `' F `  Q )
)  =  R )
3814, 30, 373eqtrd 2499 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
g `  Q )  =  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   <.cop 3994   class class class wbr 4403    |-> cmpt 4461    _I cid 4742   `'ccnv 4950    |` cres 4953    o. ccom 4955   -->wf 5525   -1-1-onto->wf1o 5528   ` cfv 5529   iota_crio 6163  (class class class)co 6203   Basecbs 14295   +g cplusg 14360   lecple 14367   occoc 14368   Atomscatm 33266   HLchlt 33353   LHypclh 33986   LTrncltrn 34103   TEndoctendo 34754   DVecHcdvh 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-riotaBAD 32962
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-undef 6905  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-n0 10694  df-z 10761  df-uz 10976  df-fz 11558  df-struct 14297  df-ndx 14298  df-slot 14299  df-base 14300  df-plusg 14373  df-mulr 14374  df-sca 14376  df-vsca 14377  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-p1 15332  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-llines 33500  df-lplanes 33501  df-lvols 33502  df-lines 33503  df-psubsp 33505  df-pmap 33506  df-padd 33798  df-lhyp 33990  df-laut 33991  df-ldil 34106  df-ltrn 34107  df-trl 34161  df-tendo 34757  df-edring 34759  df-dvech 35082
This theorem is referenced by:  cdlemn11pre  35213
  Copyright terms: Public domain W3C validator