Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn8 Unicode version

Theorem cdlemn8 31687
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b  |-  B  =  ( Base `  K
)
cdlemn8.l  |-  .<_  =  ( le `  K )
cdlemn8.a  |-  A  =  ( Atoms `  K )
cdlemn8.h  |-  H  =  ( LHyp `  K
)
cdlemn8.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn8.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn8.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn8.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdlemn8.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn8.s  |-  .+  =  ( +g  `  U )
cdlemn8.f  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
cdlemn8.g  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
Assertion
Ref Expression
cdlemn8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( G  o.  `' F ) )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    T, h    P, h    Q, h    h, W    R, h
Allowed substitution hints:    A( g, s)    B( g, s)    P( g, s)    .+ ( g, h, s)    Q( g, s)    R( g, s)    T( g, s)    U( g, h, s)    E( g, h, s)    F( g, h, s)    G( g, h, s)    H( g, s)    K( g, s)    .<_ ( g, s)    O( g, h, s)    W( g, s)

Proof of Theorem cdlemn8
StepHypRef Expression
1 coass 5347 . . 3  |-  ( ( `' F  o.  F
)  o.  g )  =  ( `' F  o.  ( F  o.  g
) )
2 simp1 957 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 cdlemn8.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
4 cdlemn8.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
5 cdlemn8.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
6 cdlemn8.p . . . . . . . . . 10  |-  P  =  ( ( oc `  K ) `  W
)
73, 4, 5, 6lhpocnel2 30501 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
873ad2ant1 978 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
9 simp2l 983 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
10 cdlemn8.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemn8.f . . . . . . . . 9  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
123, 4, 5, 10, 11ltrniotacl 31061 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
132, 8, 9, 12syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  F  e.  T )
14 cdlemn8.b . . . . . . . 8  |-  B  =  ( Base `  K
)
1514, 5, 10ltrn1o 30606 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
162, 13, 15syl2anc 643 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  F : B -1-1-onto-> B )
17 f1ococnv1 5663 . . . . . 6  |-  ( F : B -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
1816, 17syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( `' F  o.  F
)  =  (  _I  |`  B ) )
1918coeq1d 4993 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
( `' F  o.  F )  o.  g
)  =  ( (  _I  |`  B )  o.  g ) )
20 simp32 994 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  e.  T )
2114, 5, 10ltrn1o 30606 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  g : B
-1-1-onto-> B )
222, 20, 21syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g : B -1-1-onto-> B )
23 f1of 5633 . . . . 5  |-  ( g : B -1-1-onto-> B  ->  g : B
--> B )
24 fcoi2 5577 . . . . 5  |-  ( g : B --> B  -> 
( (  _I  |`  B )  o.  g )  =  g )
2522, 23, 243syl 19 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
(  _I  |`  B )  o.  g )  =  g )
2619, 25eqtr2d 2437 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( ( `' F  o.  F )  o.  g ) )
27 cdlemn8.o . . . . . . 7  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
28 cdlemn8.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
29 cdlemn8.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
30 cdlemn8.s . . . . . . 7  |-  .+  =  ( +g  `  U )
31 cdlemn8.g . . . . . . 7  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
3214, 3, 4, 5, 6, 27, 10, 28, 29, 30, 11, 31cdlemn7 31686 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( G  =  ( (
s `  F )  o.  g )  /\  (  _I  |`  T )  =  s ) )
3332simpld 446 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  G  =  ( ( s `
 F )  o.  g ) )
3432simprd 450 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (  _I  |`  T )  =  s )
3534fveq1d 5689 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
(  _I  |`  T ) `
 F )  =  ( s `  F
) )
36 tendospid 31500 . . . . . . . 8  |-  ( F  e.  T  ->  (
(  _I  |`  T ) `
 F )  =  F )
3713, 36syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
(  _I  |`  T ) `
 F )  =  F )
3835, 37eqtr3d 2438 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
s `  F )  =  F )
3938coeq1d 4993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
( s `  F
)  o.  g )  =  ( F  o.  g ) )
4033, 39eqtrd 2436 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  G  =  ( F  o.  g ) )
4140coeq2d 4994 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( `' F  o.  G
)  =  ( `' F  o.  ( F  o.  g ) ) )
421, 26, 413eqtr4a 2462 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( `' F  o.  G ) )
435, 10ltrncnv 30628 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
442, 13, 43syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  `' F  e.  T )
45 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
463, 4, 5, 10, 31ltrniotacl 31061 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
472, 8, 45, 46syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  G  e.  T )
485, 10ltrncom 31220 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' F  e.  T  /\  G  e.  T )  ->  ( `' F  o.  G
)  =  ( G  o.  `' F ) )
492, 44, 47, 48syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( `' F  o.  G
)  =  ( G  o.  `' F ) )
5042, 49eqtrd 2436 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( G  o.  `' F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   <.cop 3777   class class class wbr 4172    e. cmpt 4226    _I cid 4453   `'ccnv 4836    |` cres 4839    o. ccom 4841   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   iota_crio 6501   Basecbs 13424   +g cplusg 13484   lecple 13491   occoc 13492   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   DVecHcdvh 31561
This theorem is referenced by:  cdlemn9  31688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237  df-edring 31239  df-dvech 31562
  Copyright terms: Public domain W3C validator