Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn8 Structured version   Unicode version

Theorem cdlemn8 34481
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
cdlemn8.b  |-  B  =  ( Base `  K
)
cdlemn8.l  |-  .<_  =  ( le `  K )
cdlemn8.a  |-  A  =  ( Atoms `  K )
cdlemn8.h  |-  H  =  ( LHyp `  K
)
cdlemn8.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn8.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn8.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn8.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdlemn8.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn8.s  |-  .+  =  ( +g  `  U )
cdlemn8.f  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
cdlemn8.g  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
Assertion
Ref Expression
cdlemn8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( G  o.  `' F ) )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    T, h    P, h    Q, h    h, W    R, h
Allowed substitution hints:    A( g, s)    B( g, s)    P( g, s)    .+ ( g, h, s)    Q( g, s)    R( g, s)    T( g, s)    U( g, h, s)    E( g, h, s)    F( g, h, s)    G( g, h, s)    H( g, s)    K( g, s)    .<_ ( g, s)    O( g, h, s)    W( g, s)

Proof of Theorem cdlemn8
StepHypRef Expression
1 coass 5374 . . 3  |-  ( ( `' F  o.  F
)  o.  g )  =  ( `' F  o.  ( F  o.  g
) )
2 simp1 1005 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 cdlemn8.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
4 cdlemn8.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
5 cdlemn8.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
6 cdlemn8.p . . . . . . . . . 10  |-  P  =  ( ( oc `  K ) `  W
)
73, 4, 5, 6lhpocnel2 33293 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
873ad2ant1 1026 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
9 simp2l 1031 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
10 cdlemn8.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemn8.f . . . . . . . . 9  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
123, 4, 5, 10, 11ltrniotacl 33855 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
132, 8, 9, 12syl3anc 1264 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  F  e.  T )
14 cdlemn8.b . . . . . . . 8  |-  B  =  ( Base `  K
)
1514, 5, 10ltrn1o 33398 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
162, 13, 15syl2anc 665 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  F : B -1-1-onto-> B )
17 f1ococnv1 5859 . . . . . 6  |-  ( F : B -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
1816, 17syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( `' F  o.  F
)  =  (  _I  |`  B ) )
1918coeq1d 5016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
( `' F  o.  F )  o.  g
)  =  ( (  _I  |`  B )  o.  g ) )
20 simp32 1042 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  e.  T )
2114, 5, 10ltrn1o 33398 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  g : B
-1-1-onto-> B )
222, 20, 21syl2anc 665 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g : B -1-1-onto-> B )
23 f1of 5831 . . . . 5  |-  ( g : B -1-1-onto-> B  ->  g : B
--> B )
24 fcoi2 5775 . . . . 5  |-  ( g : B --> B  -> 
( (  _I  |`  B )  o.  g )  =  g )
2522, 23, 243syl 18 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
(  _I  |`  B )  o.  g )  =  g )
2619, 25eqtr2d 2471 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( ( `' F  o.  F )  o.  g ) )
27 cdlemn8.o . . . . . . 7  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
28 cdlemn8.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
29 cdlemn8.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
30 cdlemn8.s . . . . . . 7  |-  .+  =  ( +g  `  U )
31 cdlemn8.g . . . . . . 7  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
3214, 3, 4, 5, 6, 27, 10, 28, 29, 30, 11, 31cdlemn7 34480 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( G  =  ( (
s `  F )  o.  g )  /\  (  _I  |`  T )  =  s ) )
3332simpld 460 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  G  =  ( ( s `
 F )  o.  g ) )
3432simprd 464 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (  _I  |`  T )  =  s )
3534fveq1d 5883 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
(  _I  |`  T ) `
 F )  =  ( s `  F
) )
36 tendospid 34294 . . . . . . . 8  |-  ( F  e.  T  ->  (
(  _I  |`  T ) `
 F )  =  F )
3713, 36syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
(  _I  |`  T ) `
 F )  =  F )
3835, 37eqtr3d 2472 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
s `  F )  =  F )
3938coeq1d 5016 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  (
( s `  F
)  o.  g )  =  ( F  o.  g ) )
4033, 39eqtrd 2470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  G  =  ( F  o.  g ) )
4140coeq2d 5017 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( `' F  o.  G
)  =  ( `' F  o.  ( F  o.  g ) ) )
421, 26, 413eqtr4a 2496 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( `' F  o.  G ) )
435, 10ltrncnv 33420 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
442, 13, 43syl2anc 665 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  `' F  e.  T )
45 simp2r 1032 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
463, 4, 5, 10, 31ltrniotacl 33855 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
472, 8, 45, 46syl3anc 1264 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  G  e.  T )
485, 10ltrncom 34014 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' F  e.  T  /\  G  e.  T )  ->  ( `' F  o.  G
)  =  ( G  o.  `' F ) )
492, 44, 47, 48syl3anc 1264 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  ( `' F  o.  G
)  =  ( G  o.  `' F ) )
5042, 49eqtrd 2470 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. G , 
(  _I  |`  T )
>.  =  ( <. ( s `  F ) ,  s >.  .+  <. g ,  O >. )
) )  ->  g  =  ( G  o.  `' F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   <.cop 4008   class class class wbr 4426    |-> cmpt 4484    _I cid 4764   `'ccnv 4853    |` cres 4856    o. ccom 4858   -->wf 5597   -1-1-onto->wf1o 5600   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15084   +g cplusg 15152   lecple 15159   occoc 15160   Atomscatm 32538   HLchlt 32625   LHypclh 33258   LTrncltrn 33375   TEndoctendo 34028   DVecHcdvh 34355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-undef 7028  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-plusg 15165  df-mulr 15166  df-sca 15168  df-vsca 15169  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434  df-tendo 34031  df-edring 34033  df-dvech 34356
This theorem is referenced by:  cdlemn9  34482
  Copyright terms: Public domain W3C validator