Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn4a Structured version   Unicode version

Theorem cdlemn4a 35996
Description: Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
cdlemn4.b  |-  B  =  ( Base `  K
)
cdlemn4.l  |-  .<_  =  ( le `  K )
cdlemn4.a  |-  A  =  ( Atoms `  K )
cdlemn4.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn4.h  |-  H  =  ( LHyp `  K
)
cdlemn4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn4.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn4.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn4.f  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
cdlemn4.g  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
cdlemn4.j  |-  J  =  ( iota_ h  e.  T  ( h `  Q
)  =  R )
cdlemn4a.n  |-  N  =  ( LSpan `  U )
cdlemn4a.s  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
cdlemn4a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { <. G ,  (  _I  |`  T ) >. } )  C_  (
( N `  { <. F ,  (  _I  |`  T ) >. } ) 
.(+)  ( N `  { <. J ,  O >. } ) ) )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    P, h    Q, h    R, h    T, h   
h, W
Allowed substitution hints:    .(+) ( h)    U( h)    F( h)    G( h)    J( h)    N( h)    O( h)

Proof of Theorem cdlemn4a
StepHypRef Expression
1 cdlemn4.b . . . . 5  |-  B  =  ( Base `  K
)
2 cdlemn4.l . . . . 5  |-  .<_  =  ( le `  K )
3 cdlemn4.a . . . . 5  |-  A  =  ( Atoms `  K )
4 cdlemn4.p . . . . 5  |-  P  =  ( ( oc `  K ) `  W
)
5 cdlemn4.h . . . . 5  |-  H  =  ( LHyp `  K
)
6 cdlemn4.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdlemn4.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
8 cdlemn4.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
9 cdlemn4.f . . . . 5  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
10 cdlemn4.g . . . . 5  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
11 cdlemn4.j . . . . 5  |-  J  =  ( iota_ h  e.  T  ( h `  Q
)  =  R )
12 eqid 2467 . . . . 5  |-  ( +g  `  U )  =  ( +g  `  U )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn4 35995 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  <. G , 
(  _I  |`  T )
>.  =  ( <. F ,  (  _I  |`  T )
>. ( +g  `  U
) <. J ,  O >. ) )
1413sneqd 4039 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  { <. G , 
(  _I  |`  T )
>. }  =  { (
<. F ,  (  _I  |`  T ) >. ( +g  `  U ) <. J ,  O >. ) } )
1514fveq2d 5868 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { <. G ,  (  _I  |`  T ) >. } )  =  ( N `  { (
<. F ,  (  _I  |`  T ) >. ( +g  `  U ) <. J ,  O >. ) } ) )
16 simp1 996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
175, 8, 16dvhlmod 35907 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  U  e.  LMod )
182, 3, 5, 4lhpocnel2 34815 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
19183ad2ant1 1017 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
20 simp2 997 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
212, 3, 5, 6, 9ltrniotacl 35375 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
2216, 19, 20, 21syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F  e.  T )
23 eqid 2467 . . . . . 6  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
245, 6, 23tendoidcl 35565 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )
25243ad2ant1 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) )
26 eqid 2467 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
275, 6, 23, 8, 26dvhelvbasei 35885 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( Base `  U
) )
2816, 22, 25, 27syl12anc 1226 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  <. F , 
(  _I  |`  T )
>.  e.  ( Base `  U
) )
292, 3, 5, 6, 11ltrniotacl 35375 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  J  e.  T )
301, 5, 6, 23, 7tendo0cl 35586 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  ( (
TEndo `  K ) `  W ) )
31303ad2ant1 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  O  e.  ( ( TEndo `  K
) `  W )
)
325, 6, 23, 8, 26dvhelvbasei 35885 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( J  e.  T  /\  O  e.  ( ( TEndo `  K
) `  W )
) )  ->  <. J ,  O >.  e.  ( Base `  U ) )
3316, 29, 31, 32syl12anc 1226 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  <. J ,  O >.  e.  ( Base `  U ) )
34 cdlemn4a.n . . . 4  |-  N  =  ( LSpan `  U )
35 cdlemn4a.s . . . 4  |-  .(+)  =  (
LSSum `  U )
3626, 12, 34, 35lspsntri 17526 . . 3  |-  ( ( U  e.  LMod  /\  <. F ,  (  _I  |`  T )
>.  e.  ( Base `  U
)  /\  <. J ,  O >.  e.  ( Base `  U ) )  -> 
( N `  {
( <. F ,  (  _I  |`  T ) >. ( +g  `  U
) <. J ,  O >. ) } )  C_  ( ( N `  { <. F ,  (  _I  |`  T ) >. } )  .(+)  ( N `
 { <. J ,  O >. } ) ) )
3717, 28, 33, 36syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { ( <. F , 
(  _I  |`  T )
>. ( +g  `  U
) <. J ,  O >. ) } )  C_  ( ( N `  { <. F ,  (  _I  |`  T ) >. } )  .(+)  ( N `
 { <. J ,  O >. } ) ) )
3815, 37eqsstrd 3538 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { <. G ,  (  _I  |`  T ) >. } )  C_  (
( N `  { <. F ,  (  _I  |`  T ) >. } ) 
.(+)  ( N `  { <. J ,  O >. } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    C_ wss 3476   {csn 4027   <.cop 4033   class class class wbr 4447    |-> cmpt 4505    _I cid 4790    |` cres 5001   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14486   +g cplusg 14551   lecple 14558   occoc 14559   LSSumclsm 16450   LModclmod 17295   LSpanclspn 17400   Atomscatm 34060   HLchlt 34147   LHypclh 34780   LTrncltrn 34897   TEndoctendo 35548   DVecHcdvh 35875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-undef 6999  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-sca 14567  df-vsca 14568  df-0g 14693  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-mnd 15728  df-submnd 15778  df-grp 15858  df-minusg 15859  df-sbg 15860  df-subg 15993  df-cntz 16150  df-lsm 16452  df-cmn 16596  df-abl 16597  df-mgp 16932  df-ur 16944  df-rng 16988  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-drng 17181  df-lmod 17297  df-lss 17362  df-lsp 17401  df-lvec 17532  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955  df-tendo 35551  df-edring 35553  df-dvech 35876
This theorem is referenced by:  cdlemn5pre  35997
  Copyright terms: Public domain W3C validator