Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn4a Structured version   Unicode version

Theorem cdlemn4a 35152
Description: Part of proof of Lemma N of [Crawley] p. 121 line 32. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
cdlemn4.b  |-  B  =  ( Base `  K
)
cdlemn4.l  |-  .<_  =  ( le `  K )
cdlemn4.a  |-  A  =  ( Atoms `  K )
cdlemn4.p  |-  P  =  ( ( oc `  K ) `  W
)
cdlemn4.h  |-  H  =  ( LHyp `  K
)
cdlemn4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn4.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
cdlemn4.u  |-  U  =  ( ( DVecH `  K
) `  W )
cdlemn4.f  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
cdlemn4.g  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
cdlemn4.j  |-  J  =  ( iota_ h  e.  T  ( h `  Q
)  =  R )
cdlemn4a.n  |-  N  =  ( LSpan `  U )
cdlemn4a.s  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
cdlemn4a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { <. G ,  (  _I  |`  T ) >. } )  C_  (
( N `  { <. F ,  (  _I  |`  T ) >. } ) 
.(+)  ( N `  { <. J ,  O >. } ) ) )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    P, h    Q, h    R, h    T, h   
h, W
Allowed substitution hints:    .(+) ( h)    U( h)    F( h)    G( h)    J( h)    N( h)    O( h)

Proof of Theorem cdlemn4a
StepHypRef Expression
1 cdlemn4.b . . . . 5  |-  B  =  ( Base `  K
)
2 cdlemn4.l . . . . 5  |-  .<_  =  ( le `  K )
3 cdlemn4.a . . . . 5  |-  A  =  ( Atoms `  K )
4 cdlemn4.p . . . . 5  |-  P  =  ( ( oc `  K ) `  W
)
5 cdlemn4.h . . . . 5  |-  H  =  ( LHyp `  K
)
6 cdlemn4.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdlemn4.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
8 cdlemn4.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
9 cdlemn4.f . . . . 5  |-  F  =  ( iota_ h  e.  T  ( h `  P
)  =  Q )
10 cdlemn4.g . . . . 5  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
11 cdlemn4.j . . . . 5  |-  J  =  ( iota_ h  e.  T  ( h `  Q
)  =  R )
12 eqid 2451 . . . . 5  |-  ( +g  `  U )  =  ( +g  `  U )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemn4 35151 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  <. G , 
(  _I  |`  T )
>.  =  ( <. F ,  (  _I  |`  T )
>. ( +g  `  U
) <. J ,  O >. ) )
1413sneqd 3989 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  { <. G , 
(  _I  |`  T )
>. }  =  { (
<. F ,  (  _I  |`  T ) >. ( +g  `  U ) <. J ,  O >. ) } )
1514fveq2d 5795 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { <. G ,  (  _I  |`  T ) >. } )  =  ( N `  { (
<. F ,  (  _I  |`  T ) >. ( +g  `  U ) <. J ,  O >. ) } ) )
16 simp1 988 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
175, 8, 16dvhlmod 35063 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  U  e.  LMod )
182, 3, 5, 4lhpocnel2 33971 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
19183ad2ant1 1009 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
20 simp2 989 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
212, 3, 5, 6, 9ltrniotacl 34531 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
2216, 19, 20, 21syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  F  e.  T )
23 eqid 2451 . . . . . 6  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
245, 6, 23tendoidcl 34721 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W
) )
25243ad2ant1 1009 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) )
26 eqid 2451 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
275, 6, 23, 8, 26dvhelvbasei 35041 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  (  _I  |`  T )  e.  ( ( TEndo `  K ) `  W ) ) )  ->  <. F ,  (  _I  |`  T ) >.  e.  ( Base `  U
) )
2816, 22, 25, 27syl12anc 1217 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  <. F , 
(  _I  |`  T )
>.  e.  ( Base `  U
) )
292, 3, 5, 6, 11ltrniotacl 34531 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  J  e.  T )
301, 5, 6, 23, 7tendo0cl 34742 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  ( (
TEndo `  K ) `  W ) )
31303ad2ant1 1009 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  O  e.  ( ( TEndo `  K
) `  W )
)
325, 6, 23, 8, 26dvhelvbasei 35041 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( J  e.  T  /\  O  e.  ( ( TEndo `  K
) `  W )
) )  ->  <. J ,  O >.  e.  ( Base `  U ) )
3316, 29, 31, 32syl12anc 1217 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  <. J ,  O >.  e.  ( Base `  U ) )
34 cdlemn4a.n . . . 4  |-  N  =  ( LSpan `  U )
35 cdlemn4a.s . . . 4  |-  .(+)  =  (
LSSum `  U )
3626, 12, 34, 35lspsntri 17286 . . 3  |-  ( ( U  e.  LMod  /\  <. F ,  (  _I  |`  T )
>.  e.  ( Base `  U
)  /\  <. J ,  O >.  e.  ( Base `  U ) )  -> 
( N `  {
( <. F ,  (  _I  |`  T ) >. ( +g  `  U
) <. J ,  O >. ) } )  C_  ( ( N `  { <. F ,  (  _I  |`  T ) >. } )  .(+)  ( N `
 { <. J ,  O >. } ) ) )
3717, 28, 33, 36syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { ( <. F , 
(  _I  |`  T )
>. ( +g  `  U
) <. J ,  O >. ) } )  C_  ( ( N `  { <. F ,  (  _I  |`  T ) >. } )  .(+)  ( N `
 { <. J ,  O >. } ) ) )
3815, 37eqsstrd 3490 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( N `  { <. G ,  (  _I  |`  T ) >. } )  C_  (
( N `  { <. F ,  (  _I  |`  T ) >. } ) 
.(+)  ( N `  { <. J ,  O >. } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    C_ wss 3428   {csn 3977   <.cop 3983   class class class wbr 4392    |-> cmpt 4450    _I cid 4731    |` cres 4942   ` cfv 5518   iota_crio 6152  (class class class)co 6192   Basecbs 14278   +g cplusg 14342   lecple 14349   occoc 14350   LSSumclsm 16239   LModclmod 17056   LSpanclspn 17160   Atomscatm 33216   HLchlt 33303   LHypclh 33936   LTrncltrn 34053   TEndoctendo 34704   DVecHcdvh 35031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-riotaBAD 32912
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-tpos 6847  df-undef 6894  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-map 7318  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-2 10483  df-3 10484  df-4 10485  df-5 10486  df-6 10487  df-n0 10683  df-z 10750  df-uz 10965  df-fz 11541  df-struct 14280  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-mulr 14356  df-sca 14358  df-vsca 14359  df-0g 14484  df-poset 15220  df-plt 15232  df-lub 15248  df-glb 15249  df-join 15250  df-meet 15251  df-p0 15313  df-p1 15314  df-lat 15320  df-clat 15382  df-mnd 15519  df-submnd 15569  df-grp 15649  df-minusg 15650  df-sbg 15651  df-subg 15782  df-cntz 15939  df-lsm 16241  df-cmn 16385  df-abl 16386  df-mgp 16699  df-ur 16711  df-rng 16755  df-oppr 16823  df-dvdsr 16841  df-unit 16842  df-invr 16872  df-dvr 16883  df-drng 16942  df-lmod 17058  df-lss 17122  df-lsp 17161  df-lvec 17292  df-oposet 33129  df-ol 33131  df-oml 33132  df-covers 33219  df-ats 33220  df-atl 33251  df-cvlat 33275  df-hlat 33304  df-llines 33450  df-lplanes 33451  df-lvols 33452  df-lines 33453  df-psubsp 33455  df-pmap 33456  df-padd 33748  df-lhyp 33940  df-laut 33941  df-ldil 34056  df-ltrn 34057  df-trl 34111  df-tendo 34707  df-edring 34709  df-dvech 35032
This theorem is referenced by:  cdlemn5pre  35153
  Copyright terms: Public domain W3C validator