Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn10 Unicode version

Theorem cdlemn10 30085
Description: Part of proof of Lemma N of [Crawley] p. 121 line 36. (Contributed by NM, 27-Feb-2014.)
Hypotheses
Ref Expression
cdlemn10.b  |-  B  =  ( Base `  K
)
cdlemn10.l  |-  .<_  =  ( le `  K )
cdlemn10.j  |-  .\/  =  ( join `  K )
cdlemn10.a  |-  A  =  ( Atoms `  K )
cdlemn10.h  |-  H  =  ( LHyp `  K
)
cdlemn10.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemn10.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemn10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  S  .<_  ( Q  .\/  X ) )

Proof of Theorem cdlemn10
StepHypRef Expression
1 cdlemn10.b . 2  |-  B  =  ( Base `  K
)
2 cdlemn10.l . 2  |-  .<_  =  ( le `  K )
3 simp1l 984 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  K  e.  HL )
4 hllat 28242 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  K  e.  Lat )
6 simp22l 1079 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  S  e.  A )
7 cdlemn10.a . . . 4  |-  A  =  ( Atoms `  K )
81, 7atbase 28168 . . 3  |-  ( S  e.  A  ->  S  e.  B )
96, 8syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  S  e.  B )
10 simp21l 1077 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  Q  e.  A )
11 cdlemn10.j . . . 4  |-  .\/  =  ( join `  K )
121, 11, 7hlatjcl 28245 . . 3  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  S  e.  A )  ->  ( Q  .\/  S
)  e.  B )
133, 10, 6, 12syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  S
)  e.  B )
141, 7atbase 28168 . . . 4  |-  ( Q  e.  A  ->  Q  e.  B )
1510, 14syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  Q  e.  B )
16 simp23l 1081 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  X  e.  B )
171, 11latjcl 14000 . . 3  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q  .\/  X
)  e.  B )
185, 15, 16, 17syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  X
)  e.  B )
192, 11, 7hlatlej2 28254 . . 3  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  S  e.  A )  ->  S  .<_  ( Q  .\/  S ) )
203, 10, 6, 19syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  S  .<_  ( Q  .\/  S ) )
21 simp1r 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  W  e.  H )
22 cdlemn10.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
231, 22lhpbase 28876 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
2421, 23syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  W  e.  B )
252, 11, 7hlatlej1 28253 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  S  e.  A )  ->  Q  .<_  ( Q  .\/  S ) )
263, 10, 6, 25syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  Q  .<_  ( Q  .\/  S ) )
27 eqid 2253 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
281, 2, 11, 27, 7atmod3i1 28742 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( Q  .\/  S
)  e.  B  /\  W  e.  B )  /\  Q  .<_  ( Q 
.\/  S ) )  ->  ( Q  .\/  ( ( Q  .\/  S ) ( meet `  K
) W ) )  =  ( ( Q 
.\/  S ) (
meet `  K )
( Q  .\/  W
) ) )
293, 10, 13, 24, 26, 28syl131anc 1200 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  (
( Q  .\/  S
) ( meet `  K
) W ) )  =  ( ( Q 
.\/  S ) (
meet `  K )
( Q  .\/  W
) ) )
30 simp1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
31 simp21 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
32 eqid 2253 . . . . . . 7  |-  ( 1.
`  K )  =  ( 1. `  K
)
332, 11, 32, 7, 22lhpjat2 28899 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  .\/  W
)  =  ( 1.
`  K ) )
3430, 31, 33syl2anc 645 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  W
)  =  ( 1.
`  K ) )
3534oveq2d 5726 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( ( Q  .\/  S ) ( meet `  K
) ( Q  .\/  W ) )  =  ( ( Q  .\/  S
) ( meet `  K
) ( 1. `  K ) ) )
36 hlol 28240 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
373, 36syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  K  e.  OL )
381, 27, 32olm11 28106 . . . . 5  |-  ( ( K  e.  OL  /\  ( Q  .\/  S )  e.  B )  -> 
( ( Q  .\/  S ) ( meet `  K
) ( 1. `  K ) )  =  ( Q  .\/  S
) )
3937, 13, 38syl2anc 645 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( ( Q  .\/  S ) ( meet `  K
) ( 1. `  K ) )  =  ( Q  .\/  S
) )
4029, 35, 393eqtrrd 2290 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  S
)  =  ( Q 
.\/  ( ( Q 
.\/  S ) (
meet `  K ) W ) ) )
41 simp31 996 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
g  e.  T )
42 cdlemn10.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
43 cdlemn10.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
442, 11, 27, 7, 22, 42, 43trlval2 29041 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( R `  g )  =  ( ( Q  .\/  (
g `  Q )
) ( meet `  K
) W ) )
4530, 41, 31, 44syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( R `  g
)  =  ( ( Q  .\/  ( g `
 Q ) ) ( meet `  K
) W ) )
46 simp32 997 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( g `  Q
)  =  S )
4746oveq2d 5726 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  (
g `  Q )
)  =  ( Q 
.\/  S ) )
4847oveq1d 5725 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( ( Q  .\/  ( g `  Q
) ) ( meet `  K ) W )  =  ( ( Q 
.\/  S ) (
meet `  K ) W ) )
4945, 48eqtrd 2285 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( R `  g
)  =  ( ( Q  .\/  S ) ( meet `  K
) W ) )
50 simp33 998 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( R `  g
)  .<_  X )
5149, 50eqbrtrrd 3942 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( ( Q  .\/  S ) ( meet `  K
) W )  .<_  X )
521, 27latmcl 14001 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  .\/  S )  e.  B  /\  W  e.  B )  ->  (
( Q  .\/  S
) ( meet `  K
) W )  e.  B )
535, 13, 24, 52syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( ( Q  .\/  S ) ( meet `  K
) W )  e.  B )
541, 2, 11latjlej2 14016 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( ( Q 
.\/  S ) (
meet `  K ) W )  e.  B  /\  X  e.  B  /\  Q  e.  B
) )  ->  (
( ( Q  .\/  S ) ( meet `  K
) W )  .<_  X  ->  ( Q  .\/  ( ( Q  .\/  S ) ( meet `  K
) W ) ) 
.<_  ( Q  .\/  X
) ) )
555, 53, 16, 15, 54syl13anc 1189 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( ( ( Q 
.\/  S ) (
meet `  K ) W )  .<_  X  -> 
( Q  .\/  (
( Q  .\/  S
) ( meet `  K
) W ) ) 
.<_  ( Q  .\/  X
) ) )
5651, 55mpd 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  (
( Q  .\/  S
) ( meet `  K
) W ) ) 
.<_  ( Q  .\/  X
) )
5740, 56eqbrtrd 3940 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  -> 
( Q  .\/  S
)  .<_  ( Q  .\/  X ) )
581, 2, 5, 9, 13, 18, 20, 57lattrd 14008 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  /\  (
g  e.  T  /\  ( g `  Q
)  =  S  /\  ( R `  g ) 
.<_  X ) )  ->  S  .<_  ( Q  .\/  X ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   1.cp1 13988   Latclat 13995   OLcol 28053   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  cdlemn11pre  30089
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator