Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemm10N Structured version   Unicode version

Theorem cdlemm10N 34395
Description: The image of the map  G is the entire one-dimensional subspace  ( I `  V ). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemm10.l  |-  .<_  =  ( le `  K )
cdlemm10.j  |-  .\/  =  ( join `  K )
cdlemm10.a  |-  A  =  ( Atoms `  K )
cdlemm10.h  |-  H  =  ( LHyp `  K
)
cdlemm10.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemm10.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemm10.i  |-  I  =  ( ( DIsoA `  K
) `  W )
cdlemm10.c  |-  C  =  { r  e.  A  |  ( r  .<_  ( P  .\/  V )  /\  -.  r  .<_  W ) }
cdlemm10.f  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  s )
cdlemm10.g  |-  G  =  ( q  e.  C  |->  ( iota_ f  e.  T  ( f `  P
)  =  q ) )
Assertion
Ref Expression
cdlemm10N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ran  G  =  ( I `  V
) )
Distinct variable groups:    f, r,
s,  .<_    .\/ , r    A, f,
r, s    s, q, C    G, s    f, H, s    f, K, s   
f, q, P, r, s    R, f, s    T, f, q, s    f, V, r, s    f, W, r, s
Allowed substitution hints:    A( q)    C( f, r)    R( r, q)    T( r)    F( f, s, r, q)    G( f, r, q)    H( r, q)    I( f, s, r, q)    .\/ ( f, s, q)    K( r, q)    .<_ ( q)    V( q)    W( q)

Proof of Theorem cdlemm10N
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 riotaex 6262 . . . . 5  |-  ( iota_ f  e.  T  ( f `
 P )  =  q )  e.  _V
2 cdlemm10.g . . . . 5  |-  G  =  ( q  e.  C  |->  ( iota_ f  e.  T  ( f `  P
)  =  q ) )
31, 2fnmpti 5715 . . . 4  |-  G  Fn  C
4 fvelrnb 5919 . . . 4  |-  ( G  Fn  C  ->  (
g  e.  ran  G  <->  E. s  e.  C  ( G `  s )  =  g ) )
53, 4ax-mp 5 . . 3  |-  ( g  e.  ran  G  <->  E. s  e.  C  ( G `  s )  =  g )
6 eqeq2 2435 . . . . . . . . . . . 12  |-  ( q  =  s  ->  (
( f `  P
)  =  q  <->  ( f `  P )  =  s ) )
76riotabidv 6260 . . . . . . . . . . 11  |-  ( q  =  s  ->  ( iota_ f  e.  T  ( f `  P )  =  q )  =  ( iota_ f  e.  T  ( f `  P
)  =  s ) )
8 riotaex 6262 . . . . . . . . . . 11  |-  ( iota_ f  e.  T  ( f `
 P )  =  s )  e.  _V
97, 2, 8fvmpt 5955 . . . . . . . . . 10  |-  ( s  e.  C  ->  ( G `  s )  =  ( iota_ f  e.  T  ( f `  P )  =  s ) )
10 cdlemm10.f . . . . . . . . . 10  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  s )
119, 10syl6eqr 2479 . . . . . . . . 9  |-  ( s  e.  C  ->  ( G `  s )  =  F )
1211adantl 467 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  s  e.  C )  ->  ( G `  s )  =  F )
1312eqeq1d 2422 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  s  e.  C )  ->  (
( G `  s
)  =  g  <->  F  =  g ) )
1413rexbidva 2934 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <->  E. s  e.  C  F  =  g )
)
15 simpl1 1008 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
16 simprl 762 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
g  e.  T )
17 simpl2l 1058 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  P  e.  A )
18 cdlemm10.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
19 cdlemm10.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
20 cdlemm10.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
21 cdlemm10.t . . . . . . . . . . . 12  |-  T  =  ( ( LTrn `  K
) `  W )
2218, 19, 20, 21ltrnat 33414 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  P  e.  A
)  ->  ( g `  P )  e.  A
)
2315, 16, 17, 22syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  e.  A )
24 eqid 2420 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
25 simpl1l 1056 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  K  e.  HL )
26 hllat 32638 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  Lat )
2725, 26syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  K  e.  Lat )
2824, 19atbase 32564 . . . . . . . . . . . . . 14  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2917, 28syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  P  e.  ( Base `  K ) )
3024, 20, 21ltrncl 33399 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( g `  P )  e.  (
Base `  K )
)
3115, 16, 29, 30syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  e.  ( Base `  K ) )
32 cdlemm10.j . . . . . . . . . . . . . 14  |-  .\/  =  ( join `  K )
3324, 32latjcl 16241 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
g `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( g `  P ) )  e.  ( Base `  K
) )
3427, 29, 31, 33syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  (
g `  P )
)  e.  ( Base `  K ) )
35 simpl3l 1060 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  V  e.  A )
3624, 32, 19hlatjcl 32641 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A  /\  V  e.  A )  ->  ( P  .\/  V
)  e.  ( Base `  K ) )
3725, 17, 35, 36syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  V
)  e.  ( Base `  K ) )
3824, 18, 32latlej2 16251 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
g `  P )  e.  ( Base `  K
) )  ->  (
g `  P )  .<_  ( P  .\/  (
g `  P )
) )
3927, 29, 31, 38syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  .<_  ( P  .\/  ( g `  P
) ) )
40 simpl2 1009 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
41 cdlemm10.r . . . . . . . . . . . . . . 15  |-  R  =  ( ( trL `  K
) `  W )
4218, 32, 19, 20, 21, 41trljat1 33441 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  g
) )  =  ( P  .\/  ( g `
 P ) ) )
4315, 16, 40, 42syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  ( R `  g )
)  =  ( P 
.\/  ( g `  P ) ) )
44 simprr 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( R `  g
)  .<_  V )
4524, 20, 21, 41trlcl 33439 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  ( R `  g )  e.  (
Base `  K )
)
4615, 16, 45syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( R `  g
)  e.  ( Base `  K ) )
4724, 19atbase 32564 . . . . . . . . . . . . . . . 16  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
4835, 47syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  V  e.  ( Base `  K ) )
4924, 18, 32latjlej2 16256 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( ( R `  g )  e.  (
Base `  K )  /\  V  e.  ( Base `  K )  /\  P  e.  ( Base `  K ) ) )  ->  ( ( R `
 g )  .<_  V  ->  ( P  .\/  ( R `  g ) )  .<_  ( P  .\/  V ) ) )
5027, 46, 48, 29, 49syl13anc 1266 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( ( R `  g )  .<_  V  -> 
( P  .\/  ( R `  g )
)  .<_  ( P  .\/  V ) ) )
5144, 50mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  ( R `  g )
)  .<_  ( P  .\/  V ) )
5243, 51eqbrtrrd 4439 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  (
g `  P )
)  .<_  ( P  .\/  V ) )
5324, 18, 27, 31, 34, 37, 39, 52lattrd 16248 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  .<_  ( P  .\/  V ) )
5418, 19, 20, 21ltrnel 33413 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
g `  P )  e.  A  /\  -.  (
g `  P )  .<_  W ) )
5554simprd 464 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  (
g `  P )  .<_  W )
5615, 16, 40, 55syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  -.  ( g `  P
)  .<_  W )
5753, 56jca 534 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( ( g `  P )  .<_  ( P 
.\/  V )  /\  -.  ( g `  P
)  .<_  W ) )
58 breq1 4420 . . . . . . . . . . . 12  |-  ( r  =  ( g `  P )  ->  (
r  .<_  ( P  .\/  V )  <->  ( g `  P )  .<_  ( P 
.\/  V ) ) )
59 breq1 4420 . . . . . . . . . . . . 13  |-  ( r  =  ( g `  P )  ->  (
r  .<_  W  <->  ( g `  P )  .<_  W ) )
6059notbid 295 . . . . . . . . . . . 12  |-  ( r  =  ( g `  P )  ->  ( -.  r  .<_  W  <->  -.  (
g `  P )  .<_  W ) )
6158, 60anbi12d 715 . . . . . . . . . . 11  |-  ( r  =  ( g `  P )  ->  (
( r  .<_  ( P 
.\/  V )  /\  -.  r  .<_  W )  <-> 
( ( g `  P )  .<_  ( P 
.\/  V )  /\  -.  ( g `  P
)  .<_  W ) ) )
62 cdlemm10.c . . . . . . . . . . 11  |-  C  =  { r  e.  A  |  ( r  .<_  ( P  .\/  V )  /\  -.  r  .<_  W ) }
6361, 62elrab2 3228 . . . . . . . . . 10  |-  ( ( g `  P )  e.  C  <->  ( (
g `  P )  e.  A  /\  (
( g `  P
)  .<_  ( P  .\/  V )  /\  -.  (
g `  P )  .<_  W ) ) )
6423, 57, 63sylanbrc 668 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  e.  C )
6518, 19, 20, 21cdlemeiota 33861 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  g  e.  T )  ->  g  =  ( iota_ f  e.  T  ( f `  P )  =  ( g `  P ) ) )
6615, 40, 16, 65syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
g  =  ( iota_ f  e.  T  ( f `
 P )  =  ( g `  P
) ) )
6766eqcomd 2428 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( iota_ f  e.  T  ( f `  P
)  =  ( g `
 P ) )  =  g )
68 eqeq2 2435 . . . . . . . . . . . . 13  |-  ( s  =  ( g `  P )  ->  (
( f `  P
)  =  s  <->  ( f `  P )  =  ( g `  P ) ) )
6968riotabidv 6260 . . . . . . . . . . . 12  |-  ( s  =  ( g `  P )  ->  ( iota_ f  e.  T  ( f `  P )  =  s )  =  ( iota_ f  e.  T  ( f `  P
)  =  ( g `
 P ) ) )
7010, 69syl5eq 2473 . . . . . . . . . . 11  |-  ( s  =  ( g `  P )  ->  F  =  ( iota_ f  e.  T  ( f `  P )  =  ( g `  P ) ) )
7170eqeq1d 2422 . . . . . . . . . 10  |-  ( s  =  ( g `  P )  ->  ( F  =  g  <->  ( iota_ f  e.  T  ( f `
 P )  =  ( g `  P
) )  =  g ) )
7271rspcev 3179 . . . . . . . . 9  |-  ( ( ( g `  P
)  e.  C  /\  ( iota_ f  e.  T  ( f `  P
)  =  ( g `
 P ) )  =  g )  ->  E. s  e.  C  F  =  g )
7364, 67, 72syl2anc 665 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  E. s  e.  C  F  =  g )
7473ex 435 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( ( g  e.  T  /\  ( R `  g )  .<_  V )  ->  E. s  e.  C  F  =  g ) )
75 breq1 4420 . . . . . . . . . . . . 13  |-  ( r  =  s  ->  (
r  .<_  ( P  .\/  V )  <->  s  .<_  ( P 
.\/  V ) ) )
76 breq1 4420 . . . . . . . . . . . . . 14  |-  ( r  =  s  ->  (
r  .<_  W  <->  s  .<_  W ) )
7776notbid 295 . . . . . . . . . . . . 13  |-  ( r  =  s  ->  ( -.  r  .<_  W  <->  -.  s  .<_  W ) )
7875, 77anbi12d 715 . . . . . . . . . . . 12  |-  ( r  =  s  ->  (
( r  .<_  ( P 
.\/  V )  /\  -.  r  .<_  W )  <-> 
( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )
7978, 62elrab2 3228 . . . . . . . . . . 11  |-  ( s  e.  C  <->  ( s  e.  A  /\  (
s  .<_  ( P  .\/  V )  /\  -.  s  .<_  W ) ) )
80 simpl1 1008 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
81 simpl2l 1058 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  P  e.  A )
82 simpl2r 1059 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  -.  P  .<_  W )
83 simprl 762 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  s  e.  A )
84 simprrr 773 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  -.  s  .<_  W )
8518, 19, 20, 21, 10ltrniotacl 33855 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  F  e.  T )
8618, 19, 20, 21, 10ltrniotaval 33857 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( F `  P )  =  s )
8785, 86jca 534 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( F  e.  T  /\  ( F `  P )  =  s ) )
8880, 81, 82, 83, 84, 87syl122anc 1273 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( F  e.  T  /\  ( F `  P )  =  s ) )
89 simp3l 1033 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  F  e.  T
)
90 simp11 1035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
91 simp12 1036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
92 eqid 2420 . . . . . . . . . . . . . . . . 17  |-  ( meet `  K )  =  (
meet `  K )
9318, 32, 92, 19, 20, 21, 41trlval2 33438 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
9490, 89, 91, 93syl3anc 1264 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
95 simp3r 1034 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( F `  P )  =  s )
9695oveq2d 6312 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( P  .\/  ( F `  P ) )  =  ( P 
.\/  s ) )
9796oveq1d 6311 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( ( P 
.\/  ( F `  P ) ) (
meet `  K ) W )  =  ( ( P  .\/  s
) ( meet `  K
) W ) )
9894, 97eqtrd 2461 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( R `  F )  =  ( ( P  .\/  s
) ( meet `  K
) W ) )
99 simpl1l 1056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  K  e.  HL )
100 simpl3l 1060 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  V  e.  A )
10118, 32, 19hlatlej1 32649 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  P  e.  A  /\  V  e.  A )  ->  P  .<_  ( P  .\/  V ) )
10299, 81, 100, 101syl3anc 1264 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  P  .<_  ( P  .\/  V
) )
103 simprrl 772 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  s  .<_  ( P  .\/  V
) )
10499, 26syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  K  e.  Lat )
10581, 28syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  P  e.  ( Base `  K
) )
10624, 19atbase 32564 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  A  ->  s  e.  ( Base `  K
) )
107106ad2antrl 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  s  e.  ( Base `  K
) )
10899, 81, 100, 36syl3anc 1264 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( P  .\/  V )  e.  ( Base `  K
) )
10924, 18, 32latjle12 16252 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  s  e.  ( Base `  K )  /\  ( P  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  V )  /\  s  .<_  ( P 
.\/  V ) )  <-> 
( P  .\/  s
)  .<_  ( P  .\/  V ) ) )
110104, 105, 107, 108, 109syl13anc 1266 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .<_  ( P 
.\/  V )  /\  s  .<_  ( P  .\/  V ) )  <->  ( P  .\/  s )  .<_  ( P 
.\/  V ) ) )
111102, 103, 110mpbi2and 929 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( P  .\/  s )  .<_  ( P  .\/  V ) )
11224, 32, 19hlatjcl 32641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  P  e.  A  /\  s  e.  A )  ->  ( P  .\/  s
)  e.  ( Base `  K ) )
11399, 81, 83, 112syl3anc 1264 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( P  .\/  s )  e.  ( Base `  K
) )
114 simpl1r 1057 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  W  e.  H )
11524, 20lhpbase 33272 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
116114, 115syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  W  e.  ( Base `  K
) )
11724, 18, 92latmlem1 16271 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  s )  e.  (
Base `  K )  /\  ( P  .\/  V
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  s )  .<_  ( P 
.\/  V )  -> 
( ( P  .\/  s ) ( meet `  K ) W ) 
.<_  ( ( P  .\/  V ) ( meet `  K
) W ) ) )
118104, 113, 108, 116, 117syl13anc 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  s
)  .<_  ( P  .\/  V )  ->  ( ( P  .\/  s ) (
meet `  K ) W )  .<_  ( ( P  .\/  V ) ( meet `  K
) W ) ) )
119111, 118mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  s
) ( meet `  K
) W )  .<_  ( ( P  .\/  V ) ( meet `  K
) W ) )
12018, 32, 92, 19, 20lhpat4N 33318 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( ( P 
.\/  V ) (
meet `  K ) W )  =  V )
121120adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  V
) ( meet `  K
) W )  =  V )
122119, 121breqtrd 4441 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  s
) ( meet `  K
) W )  .<_  V )
1231223adant3 1025 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( ( P 
.\/  s ) (
meet `  K ) W )  .<_  V )
12498, 123eqbrtrd 4437 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( R `  F )  .<_  V )
12589, 124jca 534 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( F  e.  T  /\  ( R `
 F )  .<_  V ) )
12688, 125mpd3an3 1361 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( F  e.  T  /\  ( R `  F ) 
.<_  V ) )
12779, 126sylan2b 477 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  s  e.  C )  ->  ( F  e.  T  /\  ( R `  F ) 
.<_  V ) )
128127ex 435 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( s  e.  C  ->  ( F  e.  T  /\  ( R `  F )  .<_  V ) ) )
129 eleq1 2492 . . . . . . . . . . 11  |-  ( F  =  g  ->  ( F  e.  T  <->  g  e.  T ) )
130 fveq2 5872 . . . . . . . . . . . 12  |-  ( F  =  g  ->  ( R `  F )  =  ( R `  g ) )
131130breq1d 4427 . . . . . . . . . . 11  |-  ( F  =  g  ->  (
( R `  F
)  .<_  V  <->  ( R `  g )  .<_  V ) )
132129, 131anbi12d 715 . . . . . . . . . 10  |-  ( F  =  g  ->  (
( F  e.  T  /\  ( R `  F
)  .<_  V )  <->  ( g  e.  T  /\  ( R `  g )  .<_  V ) ) )
133132biimpcd 227 . . . . . . . . 9  |-  ( ( F  e.  T  /\  ( R `  F ) 
.<_  V )  ->  ( F  =  g  ->  ( g  e.  T  /\  ( R `  g ) 
.<_  V ) ) )
134128, 133syl6 34 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( s  e.  C  ->  ( F  =  g  ->  ( g  e.  T  /\  ( R `  g )  .<_  V ) ) ) )
135134rexlimdv 2913 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  F  =  g  ->  ( g  e.  T  /\  ( R `
 g )  .<_  V ) ) )
13674, 135impbid 193 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( ( g  e.  T  /\  ( R `  g )  .<_  V )  <->  E. s  e.  C  F  =  g ) )
13714, 136bitr4d 259 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <-> 
( g  e.  T  /\  ( R `  g
)  .<_  V ) ) )
138 fveq2 5872 . . . . . . 7  |-  ( f  =  g  ->  ( R `  f )  =  ( R `  g ) )
139138breq1d 4427 . . . . . 6  |-  ( f  =  g  ->  (
( R `  f
)  .<_  V  <->  ( R `  g )  .<_  V ) )
140139elrab 3226 . . . . 5  |-  ( g  e.  { f  e.  T  |  ( R `
 f )  .<_  V }  <->  ( g  e.  T  /\  ( R `
 g )  .<_  V ) )
141137, 140syl6bbr 266 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <-> 
g  e.  { f  e.  T  |  ( R `  f ) 
.<_  V } ) )
142 simp1l 1029 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  HL )
143 simp1r 1030 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  W  e.  H
)
144 simp3l 1033 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  e.  A
)
145144, 47syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  e.  (
Base `  K )
)
146 simp3r 1034 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  .<_  W )
147 cdlemm10.i . . . . . . 7  |-  I  =  ( ( DIsoA `  K
) `  W )
14824, 18, 20, 21, 41, 147diaval 34309 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V  e.  ( Base `  K
)  /\  V  .<_  W ) )  ->  (
I `  V )  =  { f  e.  T  |  ( R `  f )  .<_  V }
)
149142, 143, 145, 146, 148syl22anc 1265 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( I `  V )  =  {
f  e.  T  | 
( R `  f
)  .<_  V } )
150149eleq2d 2490 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( g  e.  ( I `  V
)  <->  g  e.  {
f  e.  T  | 
( R `  f
)  .<_  V } ) )
151141, 150bitr4d 259 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <-> 
g  e.  ( I `
 V ) ) )
1525, 151syl5bb 260 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( g  e. 
ran  G  <->  g  e.  ( I `  V ) ) )
153152eqrdv 2417 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ran  G  =  ( I `  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   E.wrex 2774   {crab 2777   class class class wbr 4417    |-> cmpt 4475   ran crn 4846    Fn wfn 5587   ` cfv 5592   iota_crio 6257  (class class class)co 6296   Basecbs 15073   lecple 15149   joincjn 16133   meetcmee 16134   Latclat 16235   Atomscatm 32538   HLchlt 32625   LHypclh 33258   LTrncltrn 33375   trLctrl 33433   DIsoAcdia 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6798  df-2nd 6799  df-undef 7019  df-map 7473  df-preset 16117  df-poset 16135  df-plt 16148  df-lub 16164  df-glb 16165  df-join 16166  df-meet 16167  df-p0 16229  df-p1 16230  df-lat 16236  df-clat 16298  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434  df-disoa 34306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator