Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemm10N Structured version   Unicode version

Theorem cdlemm10N 35915
Description: The image of the map  G is the entire one-dimensional subspace  ( I `  V ). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemm10.l  |-  .<_  =  ( le `  K )
cdlemm10.j  |-  .\/  =  ( join `  K )
cdlemm10.a  |-  A  =  ( Atoms `  K )
cdlemm10.h  |-  H  =  ( LHyp `  K
)
cdlemm10.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemm10.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemm10.i  |-  I  =  ( ( DIsoA `  K
) `  W )
cdlemm10.c  |-  C  =  { r  e.  A  |  ( r  .<_  ( P  .\/  V )  /\  -.  r  .<_  W ) }
cdlemm10.f  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  s )
cdlemm10.g  |-  G  =  ( q  e.  C  |->  ( iota_ f  e.  T  ( f `  P
)  =  q ) )
Assertion
Ref Expression
cdlemm10N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ran  G  =  ( I `  V
) )
Distinct variable groups:    f, r,
s,  .<_    .\/ , r    A, f,
r, s    s, q, C    G, s    f, H, s    f, K, s   
f, q, P, r, s    R, f, s    T, f, q, s    f, V, r, s    f, W, r, s
Allowed substitution hints:    A( q)    C( f, r)    R( r, q)    T( r)    F( f, s, r, q)    G( f, r, q)    H( r, q)    I( f, s, r, q)    .\/ ( f, s, q)    K( r, q)    .<_ ( q)    V( q)    W( q)

Proof of Theorem cdlemm10N
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 riotaex 6247 . . . . 5  |-  ( iota_ f  e.  T  ( f `
 P )  =  q )  e.  _V
2 cdlemm10.g . . . . 5  |-  G  =  ( q  e.  C  |->  ( iota_ f  e.  T  ( f `  P
)  =  q ) )
31, 2fnmpti 5707 . . . 4  |-  G  Fn  C
4 fvelrnb 5913 . . . 4  |-  ( G  Fn  C  ->  (
g  e.  ran  G  <->  E. s  e.  C  ( G `  s )  =  g ) )
53, 4ax-mp 5 . . 3  |-  ( g  e.  ran  G  <->  E. s  e.  C  ( G `  s )  =  g )
6 eqeq2 2482 . . . . . . . . . . . 12  |-  ( q  =  s  ->  (
( f `  P
)  =  q  <->  ( f `  P )  =  s ) )
76riotabidv 6245 . . . . . . . . . . 11  |-  ( q  =  s  ->  ( iota_ f  e.  T  ( f `  P )  =  q )  =  ( iota_ f  e.  T  ( f `  P
)  =  s ) )
8 riotaex 6247 . . . . . . . . . . 11  |-  ( iota_ f  e.  T  ( f `
 P )  =  s )  e.  _V
97, 2, 8fvmpt 5948 . . . . . . . . . 10  |-  ( s  e.  C  ->  ( G `  s )  =  ( iota_ f  e.  T  ( f `  P )  =  s ) )
10 cdlemm10.f . . . . . . . . . 10  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  s )
119, 10syl6eqr 2526 . . . . . . . . 9  |-  ( s  e.  C  ->  ( G `  s )  =  F )
1211adantl 466 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  s  e.  C )  ->  ( G `  s )  =  F )
1312eqeq1d 2469 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  s  e.  C )  ->  (
( G `  s
)  =  g  <->  F  =  g ) )
1413rexbidva 2970 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <->  E. s  e.  C  F  =  g )
)
15 simpl1 999 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
16 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
g  e.  T )
17 simpl2l 1049 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  P  e.  A )
18 cdlemm10.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
19 cdlemm10.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
20 cdlemm10.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
21 cdlemm10.t . . . . . . . . . . . 12  |-  T  =  ( ( LTrn `  K
) `  W )
2218, 19, 20, 21ltrnat 34936 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  P  e.  A
)  ->  ( g `  P )  e.  A
)
2315, 16, 17, 22syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  e.  A )
24 eqid 2467 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
25 simpl1l 1047 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  K  e.  HL )
26 hllat 34160 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  Lat )
2725, 26syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  K  e.  Lat )
2824, 19atbase 34086 . . . . . . . . . . . . . 14  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2917, 28syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  P  e.  ( Base `  K ) )
3024, 20, 21ltrncl 34921 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( g `  P )  e.  (
Base `  K )
)
3115, 16, 29, 30syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  e.  ( Base `  K ) )
32 cdlemm10.j . . . . . . . . . . . . . 14  |-  .\/  =  ( join `  K )
3324, 32latjcl 15534 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
g `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( g `  P ) )  e.  ( Base `  K
) )
3427, 29, 31, 33syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  (
g `  P )
)  e.  ( Base `  K ) )
35 simpl3l 1051 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  V  e.  A )
3624, 32, 19hlatjcl 34163 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A  /\  V  e.  A )  ->  ( P  .\/  V
)  e.  ( Base `  K ) )
3725, 17, 35, 36syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  V
)  e.  ( Base `  K ) )
3824, 18, 32latlej2 15544 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
g `  P )  e.  ( Base `  K
) )  ->  (
g `  P )  .<_  ( P  .\/  (
g `  P )
) )
3927, 29, 31, 38syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  .<_  ( P  .\/  ( g `  P
) ) )
40 simpl2 1000 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
41 cdlemm10.r . . . . . . . . . . . . . . 15  |-  R  =  ( ( trL `  K
) `  W )
4218, 32, 19, 20, 21, 41trljat1 34962 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  g
) )  =  ( P  .\/  ( g `
 P ) ) )
4315, 16, 40, 42syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  ( R `  g )
)  =  ( P 
.\/  ( g `  P ) ) )
44 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( R `  g
)  .<_  V )
4524, 20, 21, 41trlcl 34960 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  ( R `  g )  e.  (
Base `  K )
)
4615, 16, 45syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( R `  g
)  e.  ( Base `  K ) )
4724, 19atbase 34086 . . . . . . . . . . . . . . . 16  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
4835, 47syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  V  e.  ( Base `  K ) )
4924, 18, 32latjlej2 15549 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( ( R `  g )  e.  (
Base `  K )  /\  V  e.  ( Base `  K )  /\  P  e.  ( Base `  K ) ) )  ->  ( ( R `
 g )  .<_  V  ->  ( P  .\/  ( R `  g ) )  .<_  ( P  .\/  V ) ) )
5027, 46, 48, 29, 49syl13anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( ( R `  g )  .<_  V  -> 
( P  .\/  ( R `  g )
)  .<_  ( P  .\/  V ) ) )
5144, 50mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  ( R `  g )
)  .<_  ( P  .\/  V ) )
5243, 51eqbrtrrd 4469 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( P  .\/  (
g `  P )
)  .<_  ( P  .\/  V ) )
5324, 18, 27, 31, 34, 37, 39, 52lattrd 15541 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  .<_  ( P  .\/  V ) )
5418, 19, 20, 21ltrnel 34935 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
g `  P )  e.  A  /\  -.  (
g `  P )  .<_  W ) )
5554simprd 463 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  (
g `  P )  .<_  W )
5615, 16, 40, 55syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  -.  ( g `  P
)  .<_  W )
5753, 56jca 532 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( ( g `  P )  .<_  ( P 
.\/  V )  /\  -.  ( g `  P
)  .<_  W ) )
58 breq1 4450 . . . . . . . . . . . 12  |-  ( r  =  ( g `  P )  ->  (
r  .<_  ( P  .\/  V )  <->  ( g `  P )  .<_  ( P 
.\/  V ) ) )
59 breq1 4450 . . . . . . . . . . . . 13  |-  ( r  =  ( g `  P )  ->  (
r  .<_  W  <->  ( g `  P )  .<_  W ) )
6059notbid 294 . . . . . . . . . . . 12  |-  ( r  =  ( g `  P )  ->  ( -.  r  .<_  W  <->  -.  (
g `  P )  .<_  W ) )
6158, 60anbi12d 710 . . . . . . . . . . 11  |-  ( r  =  ( g `  P )  ->  (
( r  .<_  ( P 
.\/  V )  /\  -.  r  .<_  W )  <-> 
( ( g `  P )  .<_  ( P 
.\/  V )  /\  -.  ( g `  P
)  .<_  W ) ) )
62 cdlemm10.c . . . . . . . . . . 11  |-  C  =  { r  e.  A  |  ( r  .<_  ( P  .\/  V )  /\  -.  r  .<_  W ) }
6361, 62elrab2 3263 . . . . . . . . . 10  |-  ( ( g `  P )  e.  C  <->  ( (
g `  P )  e.  A  /\  (
( g `  P
)  .<_  ( P  .\/  V )  /\  -.  (
g `  P )  .<_  W ) ) )
6423, 57, 63sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( g `  P
)  e.  C )
6518, 19, 20, 21cdlemeiota 35381 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  g  e.  T )  ->  g  =  ( iota_ f  e.  T  ( f `  P )  =  ( g `  P ) ) )
6615, 40, 16, 65syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
g  =  ( iota_ f  e.  T  ( f `
 P )  =  ( g `  P
) ) )
6766eqcomd 2475 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  -> 
( iota_ f  e.  T  ( f `  P
)  =  ( g `
 P ) )  =  g )
68 eqeq2 2482 . . . . . . . . . . . . 13  |-  ( s  =  ( g `  P )  ->  (
( f `  P
)  =  s  <->  ( f `  P )  =  ( g `  P ) ) )
6968riotabidv 6245 . . . . . . . . . . . 12  |-  ( s  =  ( g `  P )  ->  ( iota_ f  e.  T  ( f `  P )  =  s )  =  ( iota_ f  e.  T  ( f `  P
)  =  ( g `
 P ) ) )
7010, 69syl5eq 2520 . . . . . . . . . . 11  |-  ( s  =  ( g `  P )  ->  F  =  ( iota_ f  e.  T  ( f `  P )  =  ( g `  P ) ) )
7170eqeq1d 2469 . . . . . . . . . 10  |-  ( s  =  ( g `  P )  ->  ( F  =  g  <->  ( iota_ f  e.  T  ( f `
 P )  =  ( g `  P
) )  =  g ) )
7271rspcev 3214 . . . . . . . . 9  |-  ( ( ( g `  P
)  e.  C  /\  ( iota_ f  e.  T  ( f `  P
)  =  ( g `
 P ) )  =  g )  ->  E. s  e.  C  F  =  g )
7364, 67, 72syl2anc 661 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  V ) )  ->  E. s  e.  C  F  =  g )
7473ex 434 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( ( g  e.  T  /\  ( R `  g )  .<_  V )  ->  E. s  e.  C  F  =  g ) )
75 breq1 4450 . . . . . . . . . . . . 13  |-  ( r  =  s  ->  (
r  .<_  ( P  .\/  V )  <->  s  .<_  ( P 
.\/  V ) ) )
76 breq1 4450 . . . . . . . . . . . . . 14  |-  ( r  =  s  ->  (
r  .<_  W  <->  s  .<_  W ) )
7776notbid 294 . . . . . . . . . . . . 13  |-  ( r  =  s  ->  ( -.  r  .<_  W  <->  -.  s  .<_  W ) )
7875, 77anbi12d 710 . . . . . . . . . . . 12  |-  ( r  =  s  ->  (
( r  .<_  ( P 
.\/  V )  /\  -.  r  .<_  W )  <-> 
( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )
7978, 62elrab2 3263 . . . . . . . . . . 11  |-  ( s  e.  C  <->  ( s  e.  A  /\  (
s  .<_  ( P  .\/  V )  /\  -.  s  .<_  W ) ) )
80 simpl1 999 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
81 simpl2l 1049 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  P  e.  A )
82 simpl2r 1050 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  -.  P  .<_  W )
83 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  s  e.  A )
84 simprrr 764 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  -.  s  .<_  W )
8518, 19, 20, 21, 10ltrniotacl 35375 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  F  e.  T )
8618, 19, 20, 21, 10ltrniotaval 35377 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( F `  P )  =  s )
8785, 86jca 532 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( F  e.  T  /\  ( F `  P )  =  s ) )
8880, 81, 82, 83, 84, 87syl122anc 1237 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( F  e.  T  /\  ( F `  P )  =  s ) )
89 simp3l 1024 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  F  e.  T
)
90 simp11 1026 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
91 simp12 1027 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
92 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( meet `  K )  =  (
meet `  K )
9318, 32, 92, 19, 20, 21, 41trlval2 34959 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
9490, 89, 91, 93syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
95 simp3r 1025 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( F `  P )  =  s )
9695oveq2d 6298 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( P  .\/  ( F `  P ) )  =  ( P 
.\/  s ) )
9796oveq1d 6297 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( ( P 
.\/  ( F `  P ) ) (
meet `  K ) W )  =  ( ( P  .\/  s
) ( meet `  K
) W ) )
9894, 97eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( R `  F )  =  ( ( P  .\/  s
) ( meet `  K
) W ) )
99 simpl1l 1047 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  K  e.  HL )
100 simpl3l 1051 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  V  e.  A )
10118, 32, 19hlatlej1 34171 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  P  e.  A  /\  V  e.  A )  ->  P  .<_  ( P  .\/  V ) )
10299, 81, 100, 101syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  P  .<_  ( P  .\/  V
) )
103 simprrl 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  s  .<_  ( P  .\/  V
) )
10499, 26syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  K  e.  Lat )
10581, 28syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  P  e.  ( Base `  K
) )
10624, 19atbase 34086 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  A  ->  s  e.  ( Base `  K
) )
107106ad2antrl 727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  s  e.  ( Base `  K
) )
10899, 81, 100, 36syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( P  .\/  V )  e.  ( Base `  K
) )
10924, 18, 32latjle12 15545 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  s  e.  ( Base `  K )  /\  ( P  .\/  V )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  V )  /\  s  .<_  ( P 
.\/  V ) )  <-> 
( P  .\/  s
)  .<_  ( P  .\/  V ) ) )
110104, 105, 107, 108, 109syl13anc 1230 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .<_  ( P 
.\/  V )  /\  s  .<_  ( P  .\/  V ) )  <->  ( P  .\/  s )  .<_  ( P 
.\/  V ) ) )
111102, 103, 110mpbi2and 919 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( P  .\/  s )  .<_  ( P  .\/  V ) )
11224, 32, 19hlatjcl 34163 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  P  e.  A  /\  s  e.  A )  ->  ( P  .\/  s
)  e.  ( Base `  K ) )
11399, 81, 83, 112syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( P  .\/  s )  e.  ( Base `  K
) )
114 simpl1r 1048 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  W  e.  H )
11524, 20lhpbase 34794 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
116114, 115syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  W  e.  ( Base `  K
) )
11724, 18, 92latmlem1 15564 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  s )  e.  (
Base `  K )  /\  ( P  .\/  V
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  s )  .<_  ( P 
.\/  V )  -> 
( ( P  .\/  s ) ( meet `  K ) W ) 
.<_  ( ( P  .\/  V ) ( meet `  K
) W ) ) )
118104, 113, 108, 116, 117syl13anc 1230 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  s
)  .<_  ( P  .\/  V )  ->  ( ( P  .\/  s ) (
meet `  K ) W )  .<_  ( ( P  .\/  V ) ( meet `  K
) W ) ) )
119111, 118mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  s
) ( meet `  K
) W )  .<_  ( ( P  .\/  V ) ( meet `  K
) W ) )
12018, 32, 92, 19, 20lhpat4N 34840 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( ( P 
.\/  V ) (
meet `  K ) W )  =  V )
121120adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  V
) ( meet `  K
) W )  =  V )
122119, 121breqtrd 4471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  (
( P  .\/  s
) ( meet `  K
) W )  .<_  V )
1231223adant3 1016 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( ( P 
.\/  s ) (
meet `  K ) W )  .<_  V )
12498, 123eqbrtrd 4467 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( R `  F )  .<_  V )
12589, 124jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) )  /\  ( F  e.  T  /\  ( F `  P )  =  s ) )  ->  ( F  e.  T  /\  ( R `
 F )  .<_  V ) )
12688, 125mpd3an3 1325 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  (
s  e.  A  /\  ( s  .<_  ( P 
.\/  V )  /\  -.  s  .<_  W ) ) )  ->  ( F  e.  T  /\  ( R `  F ) 
.<_  V ) )
12779, 126sylan2b 475 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  s  e.  C )  ->  ( F  e.  T  /\  ( R `  F ) 
.<_  V ) )
128127ex 434 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( s  e.  C  ->  ( F  e.  T  /\  ( R `  F )  .<_  V ) ) )
129 eleq1 2539 . . . . . . . . . . 11  |-  ( F  =  g  ->  ( F  e.  T  <->  g  e.  T ) )
130 fveq2 5864 . . . . . . . . . . . 12  |-  ( F  =  g  ->  ( R `  F )  =  ( R `  g ) )
131130breq1d 4457 . . . . . . . . . . 11  |-  ( F  =  g  ->  (
( R `  F
)  .<_  V  <->  ( R `  g )  .<_  V ) )
132129, 131anbi12d 710 . . . . . . . . . 10  |-  ( F  =  g  ->  (
( F  e.  T  /\  ( R `  F
)  .<_  V )  <->  ( g  e.  T  /\  ( R `  g )  .<_  V ) ) )
133132biimpcd 224 . . . . . . . . 9  |-  ( ( F  e.  T  /\  ( R `  F ) 
.<_  V )  ->  ( F  =  g  ->  ( g  e.  T  /\  ( R `  g ) 
.<_  V ) ) )
134128, 133syl6 33 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( s  e.  C  ->  ( F  =  g  ->  ( g  e.  T  /\  ( R `  g )  .<_  V ) ) ) )
135134rexlimdv 2953 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  F  =  g  ->  ( g  e.  T  /\  ( R `
 g )  .<_  V ) ) )
13674, 135impbid 191 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( ( g  e.  T  /\  ( R `  g )  .<_  V )  <->  E. s  e.  C  F  =  g ) )
13714, 136bitr4d 256 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <-> 
( g  e.  T  /\  ( R `  g
)  .<_  V ) ) )
138 fveq2 5864 . . . . . . 7  |-  ( f  =  g  ->  ( R `  f )  =  ( R `  g ) )
139138breq1d 4457 . . . . . 6  |-  ( f  =  g  ->  (
( R `  f
)  .<_  V  <->  ( R `  g )  .<_  V ) )
140139elrab 3261 . . . . 5  |-  ( g  e.  { f  e.  T  |  ( R `
 f )  .<_  V }  <->  ( g  e.  T  /\  ( R `
 g )  .<_  V ) )
141137, 140syl6bbr 263 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <-> 
g  e.  { f  e.  T  |  ( R `  f ) 
.<_  V } ) )
142 simp1l 1020 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  HL )
143 simp1r 1021 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  W  e.  H
)
144 simp3l 1024 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  e.  A
)
145144, 47syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  e.  (
Base `  K )
)
146 simp3r 1025 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  .<_  W )
147 cdlemm10.i . . . . . . 7  |-  I  =  ( ( DIsoA `  K
) `  W )
14824, 18, 20, 21, 41, 147diaval 35829 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V  e.  ( Base `  K
)  /\  V  .<_  W ) )  ->  (
I `  V )  =  { f  e.  T  |  ( R `  f )  .<_  V }
)
149142, 143, 145, 146, 148syl22anc 1229 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( I `  V )  =  {
f  e.  T  | 
( R `  f
)  .<_  V } )
150149eleq2d 2537 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( g  e.  ( I `  V
)  <->  g  e.  {
f  e.  T  | 
( R `  f
)  .<_  V } ) )
151141, 150bitr4d 256 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( E. s  e.  C  ( G `  s )  =  g  <-> 
g  e.  ( I `
 V ) ) )
1525, 151syl5bb 257 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ( g  e. 
ran  G  <->  g  e.  ( I `  V ) ) )
153152eqrdv 2464 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  ran  G  =  ( I `  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815   {crab 2818   class class class wbr 4447    |-> cmpt 4505   ran crn 5000    Fn wfn 5581   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14486   lecple 14558   joincjn 15427   meetcmee 15428   Latclat 15528   Atomscatm 34060   HLchlt 34147   LHypclh 34780   LTrncltrn 34897   trLctrl 34954   DIsoAcdia 35825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-undef 6999  df-map 7419  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955  df-disoa 35826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator