Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml4N Structured version   Unicode version

Theorem cdleml4N 36407
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b  |-  B  =  ( Base `  K
)
cdleml1.h  |-  H  =  ( LHyp `  K
)
cdleml1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml1.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml1.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml4N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Distinct variable groups:    E, s    K, s    R, s    T, s    U, s    V, s    W, s, g    B, g, s   
g, H, s    g, K    .0. , s    T, g    g, W
Allowed substitution hints:    R( g)    U( g)    E( g)    V( g)    .0. ( g)

Proof of Theorem cdleml4N
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cdleml1.b . . . 4  |-  B  =  ( Base `  K
)
2 cdleml1.h . . . 4  |-  H  =  ( LHyp `  K
)
3 cdleml1.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3cdlemftr0 35996 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  f  =/=  (  _I  |`  B ) )
543ad2ant1 1016 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. f  e.  T  f  =/=  (  _I  |`  B ) )
6 simp11 1025 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12l 1108 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  U  e.  E
)
8 simp12r 1109 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  V  e.  E
)
9 simp2 996 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  f  e.  T
)
10 simp3 997 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  f  =/=  (  _I  |`  B ) )
11 simp13l 1110 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  U  =/=  .0.  )
12 simp13r 1111 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  V  =/=  .0.  )
13 cdleml1.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
14 cdleml1.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
15 cdleml3.o . . . . 5  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
161, 2, 3, 13, 14, 15cdleml3N 36406 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
176, 7, 8, 9, 10, 11, 12, 16syl133anc 1250 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
1817rexlimdv3a 2935 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  -> 
( E. f  e.  T  f  =/=  (  _I  |`  B )  ->  E. s  e.  E  ( s  o.  U
)  =  V ) )
195, 18mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   E.wrex 2792    |-> cmpt 4491    _I cid 4776    |` cres 4987    o. ccom 4989   ` cfv 5574   Basecbs 14504   HLchlt 34777   LHypclh 35410   LTrncltrn 35527   trLctrl 35585   TEndoctendo 36180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-riotaBAD 34386
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6781  df-2nd 6782  df-undef 7000  df-map 7420  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-llines 34924  df-lplanes 34925  df-lvols 34926  df-lines 34927  df-psubsp 34929  df-pmap 34930  df-padd 35222  df-lhyp 35414  df-laut 35415  df-ldil 35530  df-ltrn 35531  df-trl 35586  df-tendo 36183
This theorem is referenced by:  cdleml5N  36408
  Copyright terms: Public domain W3C validator