Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml3N Structured version   Unicode version

Theorem cdleml3N 35649
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b  |-  B  =  ( Base `  K
)
cdleml1.h  |-  H  =  ( LHyp `  K
)
cdleml1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml1.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml1.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml3N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Distinct variable groups:    E, s    K, s    R, s    T, s    U, s    V, s    W, s, f, g    B, g, s    f, E    f,
g, H, s    f, K, g    .0. , f, s    T, f, g    U, f   
f, V    f, W, g
Allowed substitution hints:    B( f)    R( f, g)    U( g)    E( g)    V( g)    .0. ( g)

Proof of Theorem cdleml3N
StepHypRef Expression
1 simp1 991 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp2 992 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( U  e.  E  /\  V  e.  E  /\  f  e.  T
) )
3 simp31 1027 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
f  =/=  (  _I  |`  B ) )
4 simp32 1028 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  U  =/=  .0.  )
5 simp21 1024 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  U  e.  E )
6 simp23 1026 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
f  e.  T )
7 cdleml1.b . . . . . . 7  |-  B  =  ( Base `  K
)
8 cdleml1.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
9 cdleml1.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdleml1.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
11 cdleml3.o . . . . . . 7  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
127, 8, 9, 10, 11tendoid0 35496 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( f  e.  T  /\  f  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  f )  =  (  _I  |`  B )  <-> 
U  =  .0.  )
)
131, 5, 6, 3, 12syl112anc 1227 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( U `  f )  =  (  _I  |`  B )  <->  U  =  .0.  ) )
1413necon3bid 2718 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( U `  f )  =/=  (  _I  |`  B )  <->  U  =/=  .0.  ) )
154, 14mpbird 232 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( U `  f
)  =/=  (  _I  |`  B ) )
16 simp33 1029 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  V  =/=  .0.  )
17 simp22 1025 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  V  e.  E )
187, 8, 9, 10, 11tendoid0 35496 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  ( f  e.  T  /\  f  =/=  (  _I  |`  B ) ) )  ->  ( ( V `  f )  =  (  _I  |`  B )  <-> 
V  =  .0.  )
)
191, 17, 6, 3, 18syl112anc 1227 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( V `  f )  =  (  _I  |`  B )  <->  V  =  .0.  ) )
2019necon3bid 2718 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( V `  f )  =/=  (  _I  |`  B )  <->  V  =/=  .0.  ) )
2116, 20mpbird 232 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( V `  f
)  =/=  (  _I  |`  B ) )
22 cdleml1.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
237, 8, 9, 22, 10cdleml2N 35648 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  E. s  e.  E  ( s `  ( U `  f
) )  =  ( V `  f ) )
241, 2, 3, 15, 21, 23syl113anc 1235 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s `  ( U `  f )
)  =  ( V `
 f ) )
25 simpl1 994 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( K  e.  HL  /\  W  e.  H ) )
26 simpr 461 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  s  e.  E )
27 simpl21 1069 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  U  e.  E )
28 simpl23 1071 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  f  e.  T )
298, 9, 10tendocoval 35437 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  U  e.  E )  /\  f  e.  T )  ->  (
( s  o.  U
) `  f )  =  ( s `  ( U `  f ) ) )
3025, 26, 27, 28, 29syl121anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( s  o.  U ) `  f
)  =  ( s `
 ( U `  f ) ) )
3130eqeq1d 2462 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( ( s  o.  U ) `  f )  =  ( V `  f )  <-> 
( s `  ( U `  f )
)  =  ( V `
 f ) ) )
32 simp11 1021 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
33 simp2 992 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  s  e.  E
)
34 simp121 1123 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  U  e.  E
)
358, 10tendococl 35443 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  U  e.  E
)  ->  ( s  o.  U )  e.  E
)
3632, 33, 34, 35syl3anc 1223 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( s  o.  U )  e.  E
)
37 simp122 1124 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  V  e.  E
)
38 simp3 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( ( s  o.  U ) `  f )  =  ( V `  f ) )
39 simp123 1125 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  f  e.  T
)
40 simp131 1126 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  f  =/=  (  _I  |`  B ) )
417, 8, 9, 10tendocan 35495 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s  o.  U )  e.  E  /\  V  e.  E  /\  ( ( s  o.  U ) `
 f )  =  ( V `  f
) )  /\  (
f  e.  T  /\  f  =/=  (  _I  |`  B ) ) )  ->  (
s  o.  U )  =  V )
4232, 36, 37, 38, 39, 40, 41syl132anc 1241 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( s  o.  U )  =  V )
43423expia 1193 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( ( s  o.  U ) `  f )  =  ( V `  f )  ->  ( s  o.  U )  =  V ) )
4431, 43sylbird 235 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( s `  ( U `  f ) )  =  ( V `
 f )  -> 
( s  o.  U
)  =  V ) )
4544reximdva 2931 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( E. s  e.  E  ( s `  ( U `  f ) )  =  ( V `
 f )  ->  E. s  e.  E  ( s  o.  U
)  =  V ) )
4624, 45mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   E.wrex 2808    |-> cmpt 4498    _I cid 4783    |` cres 4994    o. ccom 4996   ` cfv 5579   Basecbs 14479   HLchlt 34022   LHypclh 34655   LTrncltrn 34772   trLctrl 34829   TEndoctendo 35423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-riotaBAD 33631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-undef 6992  df-map 7412  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-p1 15516  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169  df-lplanes 34170  df-lvols 34171  df-lines 34172  df-psubsp 34174  df-pmap 34175  df-padd 34467  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830  df-tendo 35426
This theorem is referenced by:  cdleml4N  35650
  Copyright terms: Public domain W3C validator