Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemksv Structured version   Visualization version   Unicode version

Theorem cdlemksv 34482
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
Assertion
Ref Expression
cdlemksv  |-  ( G  e.  T  ->  ( S `  G )  =  ( iota_ i  e.  T  ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) ) )
Distinct variable groups:    ./\ , f    .\/ , f    f, F    f, i, G    f, N    P, f    R, f    T, f    f, W
Allowed substitution hints:    A( f, i)    B( f, i)    P( i)    R( i)    S( f, i)    T( i)    F( i)    H( f, i)    .\/ ( i)    K( f, i)    .<_ ( f, i)    ./\ ( i)    N( i)    W( i)

Proof of Theorem cdlemksv
StepHypRef Expression
1 fveq2 5879 . . . . . 6  |-  ( f  =  G  ->  ( R `  f )  =  ( R `  G ) )
21oveq2d 6324 . . . . 5  |-  ( f  =  G  ->  ( P  .\/  ( R `  f ) )  =  ( P  .\/  ( R `  G )
) )
3 coeq1 4997 . . . . . . 7  |-  ( f  =  G  ->  (
f  o.  `' F
)  =  ( G  o.  `' F ) )
43fveq2d 5883 . . . . . 6  |-  ( f  =  G  ->  ( R `  ( f  o.  `' F ) )  =  ( R `  ( G  o.  `' F
) ) )
54oveq2d 6324 . . . . 5  |-  ( f  =  G  ->  (
( N `  P
)  .\/  ( R `  ( f  o.  `' F ) ) )  =  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )
62, 5oveq12d 6326 . . . 4  |-  ( f  =  G  ->  (
( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
76eqeq2d 2481 . . 3  |-  ( f  =  G  ->  (
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) )  <->  ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) ) )
87riotabidv 6272 . 2  |-  ( f  =  G  ->  ( iota_ i  e.  T  ( i `  P )  =  ( ( P 
.\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) )  =  (
iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) ) )
9 cdlemk.s . 2  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
10 riotaex 6274 . 2  |-  ( iota_ i  e.  T  ( i `
 P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) )  e.  _V
118, 9, 10fvmpt 5963 1  |-  ( G  e.  T  ->  ( S `  G )  =  ( iota_ i  e.  T  ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1452    e. wcel 1904    |-> cmpt 4454   `'ccnv 4838    o. ccom 4843   ` cfv 5589   iota_crio 6269  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   Atomscatm 32900   LHypclh 33620   LTrncltrn 33737   trLctrl 33795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fv 5597  df-riota 6270  df-ov 6311
This theorem is referenced by:  cdlemksel  34483  cdlemksv2  34485  cdlemkuvN  34502  cdlemkuel  34503  cdlemkuv2  34505  cdlemkuv-2N  34521  cdlemkuu  34533
  Copyright terms: Public domain W3C validator