Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemksv Structured version   Unicode version

Theorem cdlemksv 34488
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
Assertion
Ref Expression
cdlemksv  |-  ( G  e.  T  ->  ( S `  G )  =  ( iota_ i  e.  T  ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) ) )
Distinct variable groups:    ./\ , f    .\/ , f    f, F    f, i, G    f, N    P, f    R, f    T, f    f, W
Allowed substitution hints:    A( f, i)    B( f, i)    P( i)    R( i)    S( f, i)    T( i)    F( i)    H( f, i)    .\/ ( i)    K( f, i)    .<_ ( f, i)    ./\ ( i)    N( i)    W( i)

Proof of Theorem cdlemksv
StepHypRef Expression
1 fveq2 5691 . . . . . 6  |-  ( f  =  G  ->  ( R `  f )  =  ( R `  G ) )
21oveq2d 6107 . . . . 5  |-  ( f  =  G  ->  ( P  .\/  ( R `  f ) )  =  ( P  .\/  ( R `  G )
) )
3 coeq1 4997 . . . . . . 7  |-  ( f  =  G  ->  (
f  o.  `' F
)  =  ( G  o.  `' F ) )
43fveq2d 5695 . . . . . 6  |-  ( f  =  G  ->  ( R `  ( f  o.  `' F ) )  =  ( R `  ( G  o.  `' F
) ) )
54oveq2d 6107 . . . . 5  |-  ( f  =  G  ->  (
( N `  P
)  .\/  ( R `  ( f  o.  `' F ) ) )  =  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )
62, 5oveq12d 6109 . . . 4  |-  ( f  =  G  ->  (
( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
76eqeq2d 2454 . . 3  |-  ( f  =  G  ->  (
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) )  <->  ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) ) )
87riotabidv 6054 . 2  |-  ( f  =  G  ->  ( iota_ i  e.  T  ( i `  P )  =  ( ( P 
.\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) )  =  (
iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) ) )
9 cdlemk.s . 2  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
10 riotaex 6056 . 2  |-  ( iota_ i  e.  T  ( i `
 P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) )  e.  _V
118, 9, 10fvmpt 5774 1  |-  ( G  e.  T  ->  ( S `  G )  =  ( iota_ i  e.  T  ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756    e. cmpt 4350   `'ccnv 4839    o. ccom 4844   ` cfv 5418   iota_crio 6051  (class class class)co 6091   Basecbs 14174   lecple 14245   joincjn 15114   meetcmee 15115   Atomscatm 32908   LHypclh 33628   LTrncltrn 33745   trLctrl 33802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-iota 5381  df-fun 5420  df-fv 5426  df-riota 6052  df-ov 6094
This theorem is referenced by:  cdlemksel  34489  cdlemksv2  34491  cdlemkuvN  34508  cdlemkuel  34509  cdlemkuv2  34511  cdlemkuv-2N  34527  cdlemkuu  34539
  Copyright terms: Public domain W3C validator