Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkoatnle Structured version   Visualization version   Unicode version

Theorem cdlemkoatnle 34462
Description: Utility lemma. (Contributed by NM, 2-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b  |-  B  =  ( Base `  K
)
cdlemk1.l  |-  .<_  =  ( le `  K )
cdlemk1.j  |-  .\/  =  ( join `  K )
cdlemk1.m  |-  ./\  =  ( meet `  K )
cdlemk1.a  |-  A  =  ( Atoms `  K )
cdlemk1.h  |-  H  =  ( LHyp `  K
)
cdlemk1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk1.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk1.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk1.o  |-  O  =  ( S `  D
)
Assertion
Ref Expression
cdlemkoatnle  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( ( O `
 P )  e.  A  /\  -.  ( O `  P )  .<_  W ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    D, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i
Allowed substitution hints:    A( f)    B( f, i)    S( f, i)    H( f)    K( f)    .<_ ( f)    O( f, i)

Proof of Theorem cdlemkoatnle
StepHypRef Expression
1 simp11 1044 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 cdlemk1.o . . 3  |-  O  =  ( S `  D
)
3 cdlemk1.b . . . 4  |-  B  =  ( Base `  K
)
4 cdlemk1.l . . . 4  |-  .<_  =  ( le `  K )
5 cdlemk1.j . . . 4  |-  .\/  =  ( join `  K )
6 cdlemk1.a . . . 4  |-  A  =  ( Atoms `  K )
7 cdlemk1.h . . . 4  |-  H  =  ( LHyp `  K
)
8 cdlemk1.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemk1.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
10 cdlemk1.m . . . 4  |-  ./\  =  ( meet `  K )
11 cdlemk1.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
123, 4, 5, 6, 7, 8, 9, 10, 11cdlemksel 34456 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( S `  D )  e.  T
)
132, 12syl5eqel 2543 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  O  e.  T
)
14 simp22 1048 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
154, 6, 7, 8ltrnel 33748 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  O  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( O `  P )  e.  A  /\  -.  ( O `  P )  .<_  W ) )
161, 13, 14, 15syl3anc 1276 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( ( O `
 P )  e.  A  /\  -.  ( O `  P )  .<_  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897    =/= wne 2632   class class class wbr 4415    |-> cmpt 4474    _I cid 4762   `'ccnv 4851    |` cres 4854    o. ccom 4856   ` cfv 5600   iota_crio 6275  (class class class)co 6314   Basecbs 15169   lecple 15245   joincjn 16237   meetcmee 16238   Atomscatm 32873   HLchlt 32960   LHypclh 33593   LTrncltrn 33710   trLctrl 33768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-riotaBAD 32569
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-iun 4293  df-iin 4294  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-1st 6819  df-2nd 6820  df-undef 7045  df-map 7499  df-preset 16221  df-poset 16239  df-plt 16252  df-lub 16268  df-glb 16269  df-join 16270  df-meet 16271  df-p0 16333  df-p1 16334  df-lat 16340  df-clat 16402  df-oposet 32786  df-ol 32788  df-oml 32789  df-covers 32876  df-ats 32877  df-atl 32908  df-cvlat 32932  df-hlat 32961  df-llines 33107  df-lplanes 33108  df-lvols 33109  df-lines 33110  df-psubsp 33112  df-pmap 33113  df-padd 33405  df-lhyp 33597  df-laut 33598  df-ldil 33713  df-ltrn 33714  df-trl 33769
This theorem is referenced by:  cdlemk14  34465  cdlemk16a  34467  cdlemk1u  34470  cdlemk5u  34472  cdlemk6u  34473  cdlemk7u  34481  cdlemk12u  34483  cdlemkoatnle-2N  34486
  Copyright terms: Public domain W3C validator