Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid2 Structured version   Unicode version

Theorem cdlemkid2 34200
Description: Lemma for cdlemkid 34212. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
Assertion
Ref Expression
cdlemkid2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ G  /  g ]_ Y  =  P )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b
Allowed substitution hints:    A( g, b)    B( b)    P( b)    R( b)    T( b)    F( g, b)    G( g, b)    H( g, b)    .\/ ( b)    K( g, b)    .<_ ( g, b)    ./\ ( b)    N( g, b)    W( g, b)    Y( g, b)    Z( b)

Proof of Theorem cdlemkid2
StepHypRef Expression
1 simp32 1042 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  G  =  (  _I  |`  B ) )
21csbeq1d 3408 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ G  /  g ]_ Y  =  [_ (  _I  |`  B )  /  g ]_ Y
)
3 cdlemk5.b . . . . . 6  |-  B  =  ( Base `  K
)
4 cdlemk5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 cdlemk5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5idltrn 33424 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
763ad2ant1 1026 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (  _I  |`  B )  e.  T )
8 cdlemk5.y . . . . 5  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
98cdlemk41 34196 . . . 4  |-  ( (  _I  |`  B )  e.  T  ->  [_ (  _I  |`  B )  / 
g ]_ Y  =  ( ( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) ) )
107, 9syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ (  _I  |`  B )  / 
g ]_ Y  =  ( ( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) ) )
11 eqid 2429 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
12 cdlemk5.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
133, 11, 4, 12trlid0 33451 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( R `  (  _I  |`  B ) )  =  ( 0. `  K ) )
14133ad2ant1 1026 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  (  _I  |`  B ) )  =  ( 0. `  K
) )
1514oveq2d 6321 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  .\/  ( R `  (  _I  |`  B ) ) )  =  ( P  .\/  ( 0.
`  K ) ) )
16 simp1l 1029 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  HL )
17 hlol 32636 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
1816, 17syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  OL )
19 simp31l 1128 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  P  e.  A )
20 cdlemk5.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
213, 20atbase 32564 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  B )
2219, 21syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  P  e.  B )
23 cdlemk5.j . . . . . . . 8  |-  .\/  =  ( join `  K )
243, 23, 11olj01 32500 . . . . . . 7  |-  ( ( K  e.  OL  /\  P  e.  B )  ->  ( P  .\/  ( 0. `  K ) )  =  P )
2518, 22, 24syl2anc 665 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  .\/  ( 0. `  K ) )  =  P )
2615, 25eqtrd 2470 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  .\/  ( R `  (  _I  |`  B ) ) )  =  P )
27 simp1 1005 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simp33l 1132 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  b  e.  T )
294, 5ltrncnv 33420 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T
)  ->  `' b  e.  T )
3027, 28, 29syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  `' b  e.  T )
313, 4, 5ltrn1o 33398 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' b  e.  T )  ->  `' b : B -1-1-onto-> B )
3227, 30, 31syl2anc 665 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  `' b : B -1-1-onto-> B )
33 f1of 5831 . . . . . . . . . 10  |-  ( `' b : B -1-1-onto-> B  ->  `' b : B --> B )
34 fcoi2 5775 . . . . . . . . . 10  |-  ( `' b : B --> B  -> 
( (  _I  |`  B )  o.  `' b )  =  `' b )
3532, 33, 343syl 18 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
(  _I  |`  B )  o.  `' b )  =  `' b )
3635fveq2d 5885 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  ( (  _I  |`  B )  o.  `' b ) )  =  ( R `  `' b ) )
374, 5, 12trlcnv 33440 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T
)  ->  ( R `  `' b )  =  ( R `  b
) )
3827, 28, 37syl2anc 665 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  `' b
)  =  ( R `
 b ) )
3936, 38eqtrd 2470 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  ( (  _I  |`  B )  o.  `' b ) )  =  ( R `  b ) )
4039oveq2d 6321 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) )  =  ( Z  .\/  ( R `
 b ) ) )
41 simp31 1041 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
42 simp33 1043 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
b  e.  T  /\  b  =/=  (  _I  |`  B ) ) )
4341, 42jca 534 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )
44 cdlemk5.l . . . . . . . 8  |-  .<_  =  ( le `  K )
45 cdlemk5.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
46 cdlemk5.z . . . . . . . 8  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
473, 44, 23, 45, 20, 4, 5, 12, 46cdlemkid1 34198 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( Z  .\/  ( R `  b )
)  =  ( P 
.\/  ( R `  b ) ) )
4843, 47syld3an3 1309 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( Z  .\/  ( R `  b ) )  =  ( P  .\/  ( R `  b )
) )
4940, 48eqtrd 2470 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) )  =  ( P  .\/  ( R `
 b ) ) )
5026, 49oveq12d 6323 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) )  =  ( P  ./\  ( P  .\/  ( R `  b
) ) ) )
51 hllat 32638 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
5216, 51syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  Lat )
533, 4, 5, 12trlcl 33439 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T
)  ->  ( R `  b )  e.  B
)
5427, 28, 53syl2anc 665 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  b )  e.  B )
553, 23, 45latabs2 16285 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( R `  b )  e.  B )  -> 
( P  ./\  ( P  .\/  ( R `  b ) ) )  =  P )
5652, 22, 54, 55syl3anc 1264 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  ./\  ( P  .\/  ( R `  b ) ) )  =  P )
5750, 56eqtrd 2470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) )  =  P )
5810, 57eqtrd 2470 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ (  _I  |`  B )  / 
g ]_ Y  =  P )
592, 58eqtrd 2470 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ G  /  g ]_ Y  =  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   [_csb 3401   class class class wbr 4426    _I cid 4764   `'ccnv 4853    |` cres 4856    o. ccom 4858   -->wf 5597   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305   Basecbs 15084   lecple 15159   joincjn 16140   meetcmee 16141   0.cp0 16234   Latclat 16242   OLcol 32449   Atomscatm 32538   HLchlt 32625   LHypclh 33258   LTrncltrn 33375   trLctrl 33433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7028  df-map 7482  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434
This theorem is referenced by:  cdlemkid3N  34209  cdlemkid4  34210
  Copyright terms: Public domain W3C validator