Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid2 Structured version   Unicode version

Theorem cdlemkid2 35738
Description: Lemma for cdlemkid 35750. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
Assertion
Ref Expression
cdlemkid2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ G  /  g ]_ Y  =  P )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b
Allowed substitution hints:    A( g, b)    B( b)    P( b)    R( b)    T( b)    F( g, b)    G( g, b)    H( g, b)    .\/ ( b)    K( g, b)    .<_ ( g, b)    ./\ ( b)    N( g, b)    W( g, b)    Y( g, b)    Z( b)

Proof of Theorem cdlemkid2
StepHypRef Expression
1 simp32 1033 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  G  =  (  _I  |`  B ) )
21csbeq1d 3442 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ G  /  g ]_ Y  =  [_ (  _I  |`  B )  /  g ]_ Y
)
3 cdlemk5.b . . . . . 6  |-  B  =  ( Base `  K
)
4 cdlemk5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 cdlemk5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5idltrn 34964 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
763ad2ant1 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (  _I  |`  B )  e.  T )
8 cdlemk5.y . . . . 5  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
98cdlemk41 35734 . . . 4  |-  ( (  _I  |`  B )  e.  T  ->  [_ (  _I  |`  B )  / 
g ]_ Y  =  ( ( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) ) )
107, 9syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ (  _I  |`  B )  / 
g ]_ Y  =  ( ( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) ) )
11 eqid 2467 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
12 cdlemk5.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
133, 11, 4, 12trlid0 34990 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( R `  (  _I  |`  B ) )  =  ( 0. `  K ) )
14133ad2ant1 1017 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  (  _I  |`  B ) )  =  ( 0. `  K
) )
1514oveq2d 6300 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  .\/  ( R `  (  _I  |`  B ) ) )  =  ( P  .\/  ( 0.
`  K ) ) )
16 simp1l 1020 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  HL )
17 hlol 34176 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
1816, 17syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  OL )
19 simp31l 1119 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  P  e.  A )
20 cdlemk5.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
213, 20atbase 34104 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  B )
2219, 21syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  P  e.  B )
23 cdlemk5.j . . . . . . . 8  |-  .\/  =  ( join `  K )
243, 23, 11olj01 34040 . . . . . . 7  |-  ( ( K  e.  OL  /\  P  e.  B )  ->  ( P  .\/  ( 0. `  K ) )  =  P )
2518, 22, 24syl2anc 661 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  .\/  ( 0. `  K ) )  =  P )
2615, 25eqtrd 2508 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  .\/  ( R `  (  _I  |`  B ) ) )  =  P )
27 simp1 996 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simp33l 1123 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  b  e.  T )
294, 5ltrncnv 34960 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T
)  ->  `' b  e.  T )
3027, 28, 29syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  `' b  e.  T )
313, 4, 5ltrn1o 34938 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' b  e.  T )  ->  `' b : B -1-1-onto-> B )
3227, 30, 31syl2anc 661 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  `' b : B -1-1-onto-> B )
33 f1of 5816 . . . . . . . . . 10  |-  ( `' b : B -1-1-onto-> B  ->  `' b : B --> B )
34 fcoi2 5760 . . . . . . . . . 10  |-  ( `' b : B --> B  -> 
( (  _I  |`  B )  o.  `' b )  =  `' b )
3532, 33, 343syl 20 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
(  _I  |`  B )  o.  `' b )  =  `' b )
3635fveq2d 5870 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  ( (  _I  |`  B )  o.  `' b ) )  =  ( R `  `' b ) )
374, 5, 12trlcnv 34979 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T
)  ->  ( R `  `' b )  =  ( R `  b
) )
3827, 28, 37syl2anc 661 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  `' b
)  =  ( R `
 b ) )
3936, 38eqtrd 2508 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  ( (  _I  |`  B )  o.  `' b ) )  =  ( R `  b ) )
4039oveq2d 6300 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) )  =  ( Z  .\/  ( R `
 b ) ) )
41 simp31 1032 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
42 simp33 1034 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
b  e.  T  /\  b  =/=  (  _I  |`  B ) ) )
4341, 42jca 532 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )
44 cdlemk5.l . . . . . . . 8  |-  .<_  =  ( le `  K )
45 cdlemk5.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
46 cdlemk5.z . . . . . . . 8  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
473, 44, 23, 45, 20, 4, 5, 12, 46cdlemkid1 35736 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( Z  .\/  ( R `  b )
)  =  ( P 
.\/  ( R `  b ) ) )
4843, 47syld3an3 1273 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( Z  .\/  ( R `  b ) )  =  ( P  .\/  ( R `  b )
) )
4940, 48eqtrd 2508 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) )  =  ( P  .\/  ( R `
 b ) ) )
5026, 49oveq12d 6302 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) )  =  ( P  ./\  ( P  .\/  ( R `  b
) ) ) )
51 hllat 34178 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
5216, 51syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  Lat )
533, 4, 5, 12trlcl 34978 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T
)  ->  ( R `  b )  e.  B
)
5427, 28, 53syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  b )  e.  B )
553, 23, 45latabs2 15575 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( R `  b )  e.  B )  -> 
( P  ./\  ( P  .\/  ( R `  b ) ) )  =  P )
5652, 22, 54, 55syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  ( P  ./\  ( P  .\/  ( R `  b ) ) )  =  P )
5750, 56eqtrd 2508 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  (
( P  .\/  ( R `  (  _I  |`  B ) ) ) 
./\  ( Z  .\/  ( R `  ( (  _I  |`  B )  o.  `' b ) ) ) )  =  P )
5810, 57eqtrd 2508 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ (  _I  |`  B )  / 
g ]_ Y  =  P )
592, 58eqtrd 2508 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  G  =  (  _I  |`  B )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  [_ G  /  g ]_ Y  =  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   [_csb 3435   class class class wbr 4447    _I cid 4790   `'ccnv 4998    |` cres 5001    o. ccom 5003   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   Basecbs 14490   lecple 14562   joincjn 15431   meetcmee 15432   0.cp0 15524   Latclat 15532   OLcol 33989   Atomscatm 34078   HLchlt 34165   LHypclh 34798   LTrncltrn 34915   trLctrl 34972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-riotaBAD 33774
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-undef 7002  df-map 7422  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-llines 34312  df-lplanes 34313  df-lvols 34314  df-lines 34315  df-psubsp 34317  df-pmap 34318  df-padd 34610  df-lhyp 34802  df-laut 34803  df-ldil 34918  df-ltrn 34919  df-trl 34973
This theorem is referenced by:  cdlemkid3N  35747  cdlemkid4  35748
  Copyright terms: Public domain W3C validator