Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid1 Structured version   Unicode version

Theorem cdlemkid1 34889
Description: Lemma for cdlemkid 34903. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
Assertion
Ref Expression
cdlemkid1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( Z  .\/  ( R `  b )
)  =  ( P 
.\/  ( R `  b ) ) )

Proof of Theorem cdlemkid1
StepHypRef Expression
1 cdlemk5.z . . 3  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
21oveq1i 6209 . 2  |-  ( Z 
.\/  ( R `  b ) )  =  ( ( ( P 
.\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )  .\/  ( R `
 b ) )
3 simp1l 1012 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  HL )
4 simp1 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
5 simp3rl 1061 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
b  e.  T )
6 simp3rr 1062 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
b  =/=  (  _I  |`  B ) )
7 cdlemk5.b . . . . . 6  |-  B  =  ( Base `  K
)
8 cdlemk5.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 cdlemk5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
10 cdlemk5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemk5.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlnidat 34140 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T  /\  b  =/=  (  _I  |`  B ) )  ->  ( R `  b )  e.  A
)
134, 5, 6, 12syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  b
)  e.  A )
14 simp3ll 1059 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  P  e.  A )
15 cdlemk5.j . . . . . 6  |-  .\/  =  ( join `  K )
167, 15, 8hlatjcl 33334 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  b )  e.  A )  -> 
( P  .\/  ( R `  b )
)  e.  B )
173, 14, 13, 16syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( P  .\/  ( R `  b )
)  e.  B )
18 hllat 33331 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
193, 18syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  K  e.  Lat )
20 simp22 1022 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  N  e.  T )
217, 8atbase 33257 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
2214, 21syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  P  e.  B )
237, 9, 10ltrncl 34092 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  P  e.  B
)  ->  ( N `  P )  e.  B
)
244, 20, 22, 23syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( N `  P
)  e.  B )
25 simp21 1021 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  F  e.  T )
269, 10ltrncnv 34113 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
274, 25, 26syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  ->  `' F  e.  T
)
289, 10ltrnco 34686 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T  /\  `' F  e.  T
)  ->  ( b  o.  `' F )  e.  T
)
294, 5, 27, 28syl3anc 1219 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( b  o.  `' F )  e.  T
)
307, 9, 10, 11trlcl 34131 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( b  o.  `' F )  e.  T
)  ->  ( R `  ( b  o.  `' F ) )  e.  B )
314, 29, 30syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  (
b  o.  `' F
) )  e.  B
)
327, 15latjcl 15339 . . . . 5  |-  ( ( K  e.  Lat  /\  ( N `  P )  e.  B  /\  ( R `  ( b  o.  `' F ) )  e.  B )  ->  (
( N `  P
)  .\/  ( R `  ( b  o.  `' F ) ) )  e.  B )
3319, 24, 31, 32syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) )  e.  B )
34 cdlemk5.l . . . . . 6  |-  .<_  =  ( le `  K )
3534, 15, 8hlatlej2 33343 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  b )  e.  A )  -> 
( R `  b
)  .<_  ( P  .\/  ( R `  b ) ) )
363, 14, 13, 35syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  b
)  .<_  ( P  .\/  ( R `  b ) ) )
37 cdlemk5.m . . . . 5  |-  ./\  =  ( meet `  K )
387, 34, 15, 37, 8atmod2i1 33828 . . . 4  |-  ( ( K  e.  HL  /\  ( ( R `  b )  e.  A  /\  ( P  .\/  ( R `  b )
)  e.  B  /\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) )  e.  B )  /\  ( R `  b ) 
.<_  ( P  .\/  ( R `  b )
) )  ->  (
( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  b ) )  =  ( ( P  .\/  ( R `  b ) )  ./\  ( (
( N `  P
)  .\/  ( R `  ( b  o.  `' F ) ) ) 
.\/  ( R `  b ) ) ) )
393, 13, 17, 33, 36, 38syl131anc 1232 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( ( P 
.\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )  .\/  ( R `
 b ) )  =  ( ( P 
.\/  ( R `  b ) )  ./\  ( ( ( N `
 P )  .\/  ( R `  ( b  o.  `' F ) ) )  .\/  ( R `  b )
) ) )
407, 8atbase 33257 . . . . . . . 8  |-  ( ( R `  b )  e.  A  ->  ( R `  b )  e.  B )
4113, 40syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  b
)  e.  B )
427, 9, 10, 11trlcl 34131 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T
)  ->  ( R `  N )  e.  B
)
434, 20, 42syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  N
)  e.  B )
447, 15latj32 15385 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( R `  b
)  e.  B  /\  ( R `  N )  e.  B ) )  ->  ( ( P 
.\/  ( R `  b ) )  .\/  ( R `  N ) )  =  ( ( P  .\/  ( R `
 N ) ) 
.\/  ( R `  b ) ) )
4519, 22, 41, 43, 44syl13anc 1221 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( P  .\/  ( R `  b ) )  .\/  ( R `
 N ) )  =  ( ( P 
.\/  ( R `  N ) )  .\/  ( R `  b ) ) )
46 simp3l 1016 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
4734, 15, 8, 9, 10, 11trljat3 34135 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  N
) )  =  ( ( N `  P
)  .\/  ( R `  N ) ) )
484, 20, 46, 47syl3anc 1219 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( P  .\/  ( R `  N )
)  =  ( ( N `  P ) 
.\/  ( R `  N ) ) )
4948oveq1d 6214 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( P  .\/  ( R `  N ) )  .\/  ( R `
 b ) )  =  ( ( ( N `  P ) 
.\/  ( R `  N ) )  .\/  ( R `  b ) ) )
507, 15latjass 15383 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( N `  P )  e.  B  /\  ( R `  N
)  e.  B  /\  ( R `  b )  e.  B ) )  ->  ( ( ( N `  P ) 
.\/  ( R `  N ) )  .\/  ( R `  b ) )  =  ( ( N `  P ) 
.\/  ( ( R `
 N )  .\/  ( R `  b ) ) ) )
5119, 24, 43, 41, 50syl13anc 1221 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( ( N `
 P )  .\/  ( R `  N ) )  .\/  ( R `
 b ) )  =  ( ( N `
 P )  .\/  ( ( R `  N )  .\/  ( R `  b )
) ) )
5245, 49, 513eqtrd 2499 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( P  .\/  ( R `  b ) )  .\/  ( R `
 N ) )  =  ( ( N `
 P )  .\/  ( ( R `  N )  .\/  ( R `  b )
) ) )
537, 15latjass 15383 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( N `  P )  e.  B  /\  ( R `  (
b  o.  `' F
) )  e.  B  /\  ( R `  b
)  e.  B ) )  ->  ( (
( N `  P
)  .\/  ( R `  ( b  o.  `' F ) ) ) 
.\/  ( R `  b ) )  =  ( ( N `  P )  .\/  (
( R `  (
b  o.  `' F
) )  .\/  ( R `  b )
) ) )
5419, 24, 31, 41, 53syl13anc 1221 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( ( N `
 P )  .\/  ( R `  ( b  o.  `' F ) ) )  .\/  ( R `  b )
)  =  ( ( N `  P ) 
.\/  ( ( R `
 ( b  o.  `' F ) )  .\/  ( R `  b ) ) ) )
557, 15latjcom 15347 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( R `  N )  e.  B  /\  ( R `  b )  e.  B )  ->  (
( R `  N
)  .\/  ( R `  b ) )  =  ( ( R `  b )  .\/  ( R `  N )
) )
5619, 43, 41, 55syl3anc 1219 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( R `  N )  .\/  ( R `  b )
)  =  ( ( R `  b ) 
.\/  ( R `  N ) ) )
579, 10, 11trlcnv 34132 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
584, 25, 57syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  `' F )  =  ( R `  F ) )
59 simp23 1023 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  F
)  =  ( R `
 N ) )
6058, 59eqtrd 2495 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( R `  `' F )  =  ( R `  N ) )
6160oveq2d 6215 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( R `  b )  .\/  ( R `  `' F
) )  =  ( ( R `  b
)  .\/  ( R `  N ) ) )
6256, 61eqtr4d 2498 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( R `  N )  .\/  ( R `  b )
)  =  ( ( R `  b ) 
.\/  ( R `  `' F ) ) )
6315, 9, 10, 11trljco 34707 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  b  e.  T  /\  `' F  e.  T
)  ->  ( ( R `  b )  .\/  ( R `  (
b  o.  `' F
) ) )  =  ( ( R `  b )  .\/  ( R `  `' F
) ) )
644, 5, 27, 63syl3anc 1219 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( R `  b )  .\/  ( R `  ( b  o.  `' F ) ) )  =  ( ( R `
 b )  .\/  ( R `  `' F
) ) )
657, 15latjcom 15347 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( R `  b )  e.  B  /\  ( R `  ( b  o.  `' F ) )  e.  B )  ->  (
( R `  b
)  .\/  ( R `  ( b  o.  `' F ) ) )  =  ( ( R `
 ( b  o.  `' F ) )  .\/  ( R `  b ) ) )
6619, 41, 31, 65syl3anc 1219 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( R `  b )  .\/  ( R `  ( b  o.  `' F ) ) )  =  ( ( R `
 ( b  o.  `' F ) )  .\/  ( R `  b ) ) )
6762, 64, 663eqtr2d 2501 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( R `  N )  .\/  ( R `  b )
)  =  ( ( R `  ( b  o.  `' F ) )  .\/  ( R `
 b ) ) )
6867oveq2d 6215 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( N `  P )  .\/  (
( R `  N
)  .\/  ( R `  b ) ) )  =  ( ( N `
 P )  .\/  ( ( R `  ( b  o.  `' F ) )  .\/  ( R `  b ) ) ) )
6954, 68eqtr4d 2498 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( ( N `
 P )  .\/  ( R `  ( b  o.  `' F ) ) )  .\/  ( R `  b )
)  =  ( ( N `  P ) 
.\/  ( ( R `
 N )  .\/  ( R `  b ) ) ) )
7052, 69eqtr4d 2498 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( P  .\/  ( R `  b ) )  .\/  ( R `
 N ) )  =  ( ( ( N `  P ) 
.\/  ( R `  ( b  o.  `' F ) ) ) 
.\/  ( R `  b ) ) )
7170oveq2d 6215 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( P  .\/  ( R `  b ) )  ./\  ( ( P  .\/  ( R `  b ) )  .\/  ( R `  N ) ) )  =  ( ( P  .\/  ( R `  b )
)  ./\  ( (
( N `  P
)  .\/  ( R `  ( b  o.  `' F ) ) ) 
.\/  ( R `  b ) ) ) )
727, 15, 37latabs2 15376 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( R `
 b ) )  e.  B  /\  ( R `  N )  e.  B )  ->  (
( P  .\/  ( R `  b )
)  ./\  ( ( P  .\/  ( R `  b ) )  .\/  ( R `  N ) ) )  =  ( P  .\/  ( R `
 b ) ) )
7319, 17, 43, 72syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( P  .\/  ( R `  b ) )  ./\  ( ( P  .\/  ( R `  b ) )  .\/  ( R `  N ) ) )  =  ( P  .\/  ( R `
 b ) ) )
7439, 71, 733eqtr2d 2501 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( ( ( P 
.\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  ( b  o.  `' F ) ) ) )  .\/  ( R `
 b ) )  =  ( P  .\/  ( R `  b ) ) )
752, 74syl5eq 2507 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( b  e.  T  /\  b  =/=  (  _I  |`  B ) ) ) )  -> 
( Z  .\/  ( R `  b )
)  =  ( P 
.\/  ( R `  b ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   class class class wbr 4399    _I cid 4738   `'ccnv 4946    |` cres 4949    o. ccom 4951   ` cfv 5525  (class class class)co 6199   Basecbs 14291   lecple 14363   joincjn 15232   meetcmee 15233   Latclat 15333   Atomscatm 33231   HLchlt 33318   LHypclh 33951   LTrncltrn 34068   trLctrl 34125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-riotaBAD 32927
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-undef 6901  df-map 7325  df-poset 15234  df-plt 15246  df-lub 15262  df-glb 15263  df-join 15264  df-meet 15265  df-p0 15327  df-p1 15328  df-lat 15334  df-clat 15396  df-oposet 33144  df-ol 33146  df-oml 33147  df-covers 33234  df-ats 33235  df-atl 33266  df-cvlat 33290  df-hlat 33319  df-llines 33465  df-lplanes 33466  df-lvols 33467  df-lines 33468  df-psubsp 33470  df-pmap 33471  df-padd 33763  df-lhyp 33955  df-laut 33956  df-ldil 34071  df-ltrn 34072  df-trl 34126
This theorem is referenced by:  cdlemkid2  34891
  Copyright terms: Public domain W3C validator