Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemki Structured version   Unicode version

Theorem cdlemki 35854
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: Eliminate and put into cdlemksel 35858. (Contributed by NM, 25-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.i  |-  I  =  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
Assertion
Ref Expression
cdlemki  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  I  e.  T
)
Distinct variable groups:    ./\ , i    .<_ , i    .\/ , i    A, i    i, F   
i, H    i, K    i, N    P, i    R, i    T, i    i, W    i, G
Allowed substitution hints:    B( i)    I(
i)

Proof of Theorem cdlemki
StepHypRef Expression
1 simp11 1026 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp22 1030 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T ) )
4 simp21 1029 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  N  e.  T
)
5 cdlemk.l . . . . 5  |-  .<_  =  ( le `  K )
6 cdlemk.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdlemk.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdlemk.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnel 35152 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( N `  P )  e.  A  /\  -.  ( N `  P )  .<_  W ) )
101, 4, 2, 9syl3anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( N `
 P )  e.  A  /\  -.  ( N `  P )  .<_  W ) )
11 simp11l 1107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  K  e.  HL )
12 simp22l 1115 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  P  e.  A
)
139simpld 459 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( N `  P )  e.  A
)
141, 4, 2, 13syl3anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( N `  P )  e.  A
)
15 cdlemk.j . . . . . 6  |-  .\/  =  ( join `  K )
165, 15, 6hlatlej2 34389 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( N `  P )  e.  A )  -> 
( N `  P
)  .<_  ( P  .\/  ( N `  P ) ) )
1711, 12, 14, 16syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( N `  P )  .<_  ( P 
.\/  ( N `  P ) ) )
18 simp23 1031 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( R `  F )  =  ( R `  N ) )
1918oveq2d 6301 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  .\/  ( R `  F ) )  =  ( P 
.\/  ( R `  N ) ) )
20 cdlemk.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
215, 15, 6, 7, 8, 20trljat1 35179 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  N
) )  =  ( P  .\/  ( N `
 P ) ) )
221, 4, 2, 21syl3anc 1228 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  .\/  ( R `  N ) )  =  ( P 
.\/  ( N `  P ) ) )
2319, 22eqtr2d 2509 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  .\/  ( N `  P ) )  =  ( P 
.\/  ( R `  F ) ) )
2417, 23breqtrd 4471 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( N `  P )  .<_  ( P 
.\/  ( R `  F ) ) )
25 simp31 1032 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  F  =/=  (  _I  |`  B ) )
26 simp32 1033 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  G  =/=  (  _I  |`  B ) )
27 simp33 1034 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
2827necomd 2738 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
29 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
30 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
31 eqid 2467 . . . 4  |-  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
3229, 5, 15, 30, 6, 7, 8, 20, 31cdlemh 35830 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( N `
 P )  e.  A  /\  -.  ( N `  P )  .<_  W )  /\  ( N `  P )  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  e.  A  /\  -.  (
( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  W ) )
333, 2, 10, 24, 25, 26, 28, 32syl133anc 1251 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  e.  A  /\  -.  (
( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  W ) )
34 cdlemk.i . . 3  |-  I  =  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
355, 6, 7, 8, 34ltrniotacl 35592 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )  e.  A  /\  -.  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  W ) )  ->  I  e.  T )
361, 2, 33, 35syl3anc 1228 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  I  e.  T
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447    _I cid 4790   `'ccnv 4998    |` cres 5001    o. ccom 5003   ` cfv 5588   iota_crio 6245  (class class class)co 6285   Basecbs 14493   lecple 14565   joincjn 15434   meetcmee 15435   Atomscatm 34277   HLchlt 34364   LHypclh 34997   LTrncltrn 35114   trLctrl 35171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-riotaBAD 33973
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786  df-undef 7003  df-map 7423  df-poset 15436  df-plt 15448  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-p0 15529  df-p1 15530  df-lat 15536  df-clat 15598  df-oposet 34190  df-ol 34192  df-oml 34193  df-covers 34280  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-llines 34511  df-lplanes 34512  df-lvols 34513  df-lines 34514  df-psubsp 34516  df-pmap 34517  df-padd 34809  df-lhyp 35001  df-laut 35002  df-ldil 35117  df-ltrn 35118  df-trl 35172
This theorem is referenced by:  cdlemksel  35858
  Copyright terms: Public domain W3C validator