Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemki Unicode version

Theorem cdlemki 31323
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: Eliminate and put into cdlemksel 31327. (Contributed by NM, 25-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.i  |-  I  =  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
Assertion
Ref Expression
cdlemki  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  I  e.  T
)
Distinct variable groups:    ./\ , i    .<_ , i    .\/ , i    A, i    i, F   
i, H    i, K    i, N    P, i    R, i    T, i    i, W    i, G
Allowed substitution hints:    B( i)    I(
i)

Proof of Theorem cdlemki
StepHypRef Expression
1 simp11 987 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp22 991 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp1 957 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T ) )
4 simp21 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  N  e.  T
)
5 cdlemk.l . . . . 5  |-  .<_  =  ( le `  K )
6 cdlemk.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdlemk.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdlemk.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnel 30621 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( N `  P )  e.  A  /\  -.  ( N `  P )  .<_  W ) )
101, 4, 2, 9syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( N `
 P )  e.  A  /\  -.  ( N `  P )  .<_  W ) )
11 simp11l 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  K  e.  HL )
12 simp22l 1076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  P  e.  A
)
139simpld 446 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( N `  P )  e.  A
)
141, 4, 2, 13syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( N `  P )  e.  A
)
15 cdlemk.j . . . . . 6  |-  .\/  =  ( join `  K )
165, 15, 6hlatlej2 29858 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( N `  P )  e.  A )  -> 
( N `  P
)  .<_  ( P  .\/  ( N `  P ) ) )
1711, 12, 14, 16syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( N `  P )  .<_  ( P 
.\/  ( N `  P ) ) )
18 simp23 992 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( R `  F )  =  ( R `  N ) )
1918oveq2d 6056 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  .\/  ( R `  F ) )  =  ( P 
.\/  ( R `  N ) ) )
20 cdlemk.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
215, 15, 6, 7, 8, 20trljat1 30648 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  N
) )  =  ( P  .\/  ( N `
 P ) ) )
221, 4, 2, 21syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  .\/  ( R `  N ) )  =  ( P 
.\/  ( N `  P ) ) )
2319, 22eqtr2d 2437 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( P  .\/  ( N `  P ) )  =  ( P 
.\/  ( R `  F ) ) )
2417, 23breqtrd 4196 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( N `  P )  .<_  ( P 
.\/  ( R `  F ) ) )
25 simp31 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  F  =/=  (  _I  |`  B ) )
26 simp32 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  G  =/=  (  _I  |`  B ) )
27 simp33 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
2827necomd 2650 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
29 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
30 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
31 eqid 2404 . . . 4  |-  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )
3229, 5, 15, 30, 6, 7, 8, 20, 31cdlemh 31299 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( N `
 P )  e.  A  /\  -.  ( N `  P )  .<_  W )  /\  ( N `  P )  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  e.  A  /\  -.  (
( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  W ) )
333, 2, 10, 24, 25, 26, 28, 32syl133anc 1207 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  e.  A  /\  -.  (
( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  W ) )
34 cdlemk.i . . 3  |-  I  =  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
355, 6, 7, 8, 34ltrniotacl 31061 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )  e.  A  /\  -.  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  W ) )  ->  I  e.  T )
361, 2, 33, 35syl3anc 1184 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  I  e.  T
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172    _I cid 4453   `'ccnv 4836    |` cres 4839    o. ccom 4841   ` cfv 5413  (class class class)co 6040   iota_crio 6501   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   trLctrl 30640
This theorem is referenced by:  cdlemksel  31327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641
  Copyright terms: Public domain W3C validator