Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkfid1N Structured version   Unicode version

Theorem cdlemkfid1N 33940
Description: Lemma for cdlemkfid3N 33944. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemkfid1N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( G `
 P ) )

Proof of Theorem cdlemkfid1N
StepHypRef Expression
1 simp1 997 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp23 1032 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  e.  T
)
3 simp3r 1026 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 cdlemk5.l . . . . 5  |-  .<_  =  ( le `  K )
5 cdlemk5.j . . . . 5  |-  .\/  =  ( join `  K )
6 cdlemk5.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdlemk5.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdlemk5.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemk5.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
104, 5, 6, 7, 8, 9trljat3 33186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  G
) )  =  ( ( G `  P
)  .\/  ( R `  G ) ) )
111, 2, 3, 10syl3anc 1230 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( R `  G ) )  =  ( ( G `  P ) 
.\/  ( R `  G ) ) )
12 simp1l 1021 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  HL )
13 simp21 1030 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T
)
14 simp3rl 1070 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  P  e.  A
)
154, 6, 7, 8ltrnat 33157 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
161, 13, 14, 15syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( F `  P )  e.  A
)
174, 6, 7, 8ltrnat 33157 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
181, 2, 14, 17syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( G `  P )  e.  A
)
195, 6hlatjcom 32385 . . . . 5  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( G `  P )  e.  A )  ->  (
( F `  P
)  .\/  ( G `  P ) )  =  ( ( G `  P )  .\/  ( F `  P )
) )
2012, 16, 18, 19syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( F `
 P )  .\/  ( G `  P ) )  =  ( ( G `  P ) 
.\/  ( F `  P ) ) )
214, 5, 6, 7, 8, 9trlcoabs2N 33741 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( G `  P )
) )
221, 13, 2, 3, 21syl121anc 1235 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( F `
 P )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( F `  P
)  .\/  ( G `  P ) ) )
237, 8, 9trlcocnv 33739 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  `' G ) )  =  ( R `  ( G  o.  `' F
) ) )
241, 13, 2, 23syl3anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  ( F  o.  `' G ) )  =  ( R `  ( G  o.  `' F
) ) )
2524oveq2d 6294 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( G `
 P )  .\/  ( R `  ( F  o.  `' G ) ) )  =  ( ( G `  P
)  .\/  ( R `  ( G  o.  `' F ) ) ) )
264, 5, 6, 7, 8, 9trlcoabs2N 33741 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( F  o.  `' G
) ) )  =  ( ( G `  P )  .\/  ( F `  P )
) )
271, 2, 13, 3, 26syl121anc 1235 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( G `
 P )  .\/  ( R `  ( F  o.  `' G ) ) )  =  ( ( G `  P
)  .\/  ( F `  P ) ) )
2825, 27eqtr3d 2445 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( G `
 P )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( G `  P
)  .\/  ( F `  P ) ) )
2920, 22, 283eqtr4d 2453 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( F `
 P )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( G `  P
)  .\/  ( R `  ( G  o.  `' F ) ) ) )
3011, 29oveq12d 6296 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( ( ( G `  P
)  .\/  ( R `  G ) )  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
31 cdlemk5.b . . . . 5  |-  B  =  ( Base `  K
)
3231, 7, 8, 9trlcl 33182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  B
)
331, 2, 32syl2anc 659 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  e.  B
)
34 simp1r 1022 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  H
)
35 simp3l 1025 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
366, 7, 8, 9trlcocnvat 33743 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  ( R `  G )  =/=  ( R `  F
) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
3712, 34, 2, 13, 35, 36syl221anc 1241 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
384, 6, 7, 8ltrnel 33156 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
391, 2, 3, 38syl3anc 1230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( G `
 P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
407, 8ltrncnv 33163 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
411, 13, 40syl2anc 659 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  `' F  e.  T )
427, 8, 9trlcnv 33183 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
431, 13, 42syl2anc 659 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
4435, 43neeqtrrd 2703 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  =/=  ( R `  `' F
) )
45 simp22 1031 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  =/=  (  _I  |`  B ) )
4631, 7, 8ltrncnvnid 33144 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  `' F  =/=  (  _I  |`  B ) )
471, 13, 45, 46syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  `' F  =/=  (  _I  |`  B ) )
4831, 7, 8, 9trlcone 33747 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  `' F  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 `' F )  /\  `' F  =/=  (  _I  |`  B ) ) )  ->  ( R `  G )  =/=  ( R `  ( G  o.  `' F
) ) )
491, 2, 41, 44, 47, 48syl122anc 1239 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  =/=  ( R `  ( G  o.  `' F ) ) )
50 eqid 2402 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
5150, 6, 7, 8, 9trlator0 33189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( ( R `  G )  e.  A  \/  ( R `  G )  =  ( 0. `  K ) ) )
521, 2, 51syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( R `
 G )  e.  A  \/  ( R `
 G )  =  ( 0. `  K
) ) )
534, 7, 8, 9trlle 33202 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  .<_  W )
5412, 34, 2, 53syl21anc 1229 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  .<_  W )
557, 8ltrnco 33738 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
561, 2, 41, 55syl3anc 1230 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( G  o.  `' F )  e.  T
)
574, 7, 8, 9trlle 33202 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T
)  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
581, 56, 57syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
594, 5, 50, 6, 7lhp2at0nle 33052 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W )  /\  ( R `  G )  =/=  ( R `  ( G  o.  `' F ) ) )  /\  ( ( ( R `  G )  e.  A  \/  ( R `  G )  =  ( 0. `  K ) )  /\  ( R `  G ) 
.<_  W )  /\  (
( R `  ( G  o.  `' F
) )  e.  A  /\  ( R `  ( G  o.  `' F
) )  .<_  W ) )  ->  -.  ( R `  ( G  o.  `' F ) )  .<_  ( ( G `  P )  .\/  ( R `  G )
) )
601, 39, 49, 52, 54, 37, 58, 59syl322anc 1258 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  -.  ( R `  ( G  o.  `' F ) )  .<_  ( ( G `  P )  .\/  ( R `  G )
) )
61 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
6231, 4, 5, 61, 62llnma1b 32803 . . 3  |-  ( ( K  e.  HL  /\  ( ( R `  G )  e.  B  /\  ( G `  P
)  e.  A  /\  ( R `  ( G  o.  `' F ) )  e.  A )  /\  -.  ( R `
 ( G  o.  `' F ) )  .<_  ( ( G `  P )  .\/  ( R `  G )
) )  ->  (
( ( G `  P )  .\/  ( R `  G )
)  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )  =  ( G `  P ) )
6312, 33, 18, 37, 60, 62syl131anc 1243 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( ( G `  P ) 
.\/  ( R `  G ) )  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( G `
 P ) )
6430, 63eqtrd 2443 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  G  e.  T
)  /\  ( ( R `  G )  =/=  ( R `  F
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( G `
 P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395    _I cid 4733   `'ccnv 4822    |` cres 4825    o. ccom 4827   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   meetcmee 15898   0.cp0 15991   Atomscatm 32281   HLchlt 32368   LHypclh 33001   LTrncltrn 33118   trLctrl 33176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-riotaBAD 31977
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-undef 7005  df-map 7459  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-lplanes 32516  df-lvols 32517  df-lines 32518  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177
This theorem is referenced by:  cdlemkfid2N  33942  cdlemkfid3N  33944
  Copyright terms: Public domain W3C validator