Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk8 Structured version   Visualization version   Unicode version

Theorem cdlemk8 34476
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( X `  P
) )  =  ( ( G `  P
)  .\/  ( R `  ( X  o.  `' G ) ) ) )

Proof of Theorem cdlemk8
StepHypRef Expression
1 coass 5361 . . . . . 6  |-  ( ( X  o.  `' G
)  o.  G )  =  ( X  o.  ( `' G  o.  G
) )
2 simp1 1030 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2l 1056 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
4 cdlemk.b . . . . . . . . . . 11  |-  B  =  ( Base `  K
)
5 cdlemk.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
6 cdlemk.t . . . . . . . . . . 11  |-  T  =  ( ( LTrn `  K
) `  W )
74, 5, 6ltrn1o 33760 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G : B
-1-1-onto-> B )
82, 3, 7syl2anc 673 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G : B
-1-1-onto-> B )
9 f1ococnv1 5856 . . . . . . . . 9  |-  ( G : B -1-1-onto-> B  ->  ( `' G  o.  G )  =  (  _I  |`  B ) )
108, 9syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' G  o.  G )  =  (  _I  |`  B ) )
1110coeq2d 5002 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  ( `' G  o.  G ) )  =  ( X  o.  (  _I  |`  B ) ) )
12 simp2r 1057 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  e.  T )
134, 5, 6ltrn1o 33760 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T
)  ->  X : B
-1-1-onto-> B )
142, 12, 13syl2anc 673 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X : B
-1-1-onto-> B )
15 f1of 5828 . . . . . . . 8  |-  ( X : B -1-1-onto-> B  ->  X : B
--> B )
16 fcoi1 5769 . . . . . . . 8  |-  ( X : B --> B  -> 
( X  o.  (  _I  |`  B ) )  =  X )
1714, 15, 163syl 18 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  (  _I  |`  B ) )  =  X )
1811, 17eqtrd 2505 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  ( `' G  o.  G ) )  =  X )
191, 18syl5eq 2517 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X  o.  `' G
)  o.  G )  =  X )
2019fveq1d 5881 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( X  o.  `' G )  o.  G
) `  P )  =  ( X `  P ) )
215, 6ltrncnv 33782 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  `' G  e.  T )
222, 3, 21syl2anc 673 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' G  e.  T )
235, 6ltrnco 34357 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  `' G  e.  T
)  ->  ( X  o.  `' G )  e.  T
)
242, 12, 22, 23syl3anc 1292 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  `' G )  e.  T
)
25 simp3l 1058 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
26 cdlemk.l . . . . . 6  |-  .<_  =  ( le `  K )
27 cdlemk.a . . . . . 6  |-  A  =  ( Atoms `  K )
2826, 27, 5, 6ltrncoval 33781 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X  o.  `' G )  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( ( X  o.  `' G )  o.  G
) `  P )  =  ( ( X  o.  `' G ) `
 ( G `  P ) ) )
292, 24, 3, 25, 28syl121anc 1297 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( X  o.  `' G )  o.  G
) `  P )  =  ( ( X  o.  `' G ) `
 ( G `  P ) ) )
3020, 29eqtr3d 2507 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  =  ( ( X  o.  `' G ) `  ( G `  P )
) )
3130oveq2d 6324 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( X `  P
) )  =  ( ( G `  P
)  .\/  ( ( X  o.  `' G
) `  ( G `  P ) ) ) )
3226, 27, 5, 6ltrnel 33775 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
33323adant2r 1287 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
34 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
35 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
3626, 34, 27, 5, 6, 35trljat1 33803 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  o.  `' G )  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( X  o.  `' G
) ) )  =  ( ( G `  P )  .\/  (
( X  o.  `' G ) `  ( G `  P )
) ) )
372, 24, 33, 36syl3anc 1292 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( X  o.  `' G
) ) )  =  ( ( G `  P )  .\/  (
( X  o.  `' G ) `  ( G `  P )
) ) )
3831, 37eqtr4d 2508 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( X `  P
) )  =  ( ( G `  P
)  .\/  ( R `  ( X  o.  `' G ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   class class class wbr 4395    _I cid 4749   `'ccnv 4838    |` cres 4841    o. ccom 4843   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   Atomscatm 32900   HLchlt 32987   LHypclh 33620   LTrncltrn 33737   trLctrl 33795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-riotaBAD 32589
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-undef 7038  df-map 7492  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-p1 16364  df-lat 16370  df-clat 16432  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-llines 33134  df-lplanes 33135  df-lvols 33136  df-lines 33137  df-psubsp 33139  df-pmap 33140  df-padd 33432  df-lhyp 33624  df-laut 33625  df-ldil 33740  df-ltrn 33741  df-trl 33796
This theorem is referenced by:  cdlemk9  34477  cdlemk9bN  34478
  Copyright terms: Public domain W3C validator