Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk7 Structured version   Unicode version

Theorem cdlemk7 34855
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk.v  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )
Assertion
Ref Expression
cdlemk7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  .<_  ( ( ( S `
 X ) `  P )  .\/  V
) )
Distinct variable groups:    ./\ , f    .\/ , f    f, F, i    f, G, i    f, N    P, f    R, f    T, f   
f, W    ./\ , i    .<_ , i    .\/ , i    A, i    i, F   
i, H    i, K    i, N    P, i    R, i    T, i    i, W    f, X, i
Allowed substitution hints:    A( f)    B( f, i)    S( f, i)    H( f)    K( f)    .<_ ( f)    V( f, i)

Proof of Theorem cdlemk7
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
) )
2 simp2 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
3 simp311 1135 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  F  =/=  (  _I  |`  B ) )
4 simp312 1136 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  G  =/=  (  _I  |`  B ) )
5 simp32 1025 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  G )  =/=  ( R `  F
) )
6 simp33 1026 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  X )  =/=  ( R `  F
) )
75, 6jca 532 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( R `  G
)  =/=  ( R `
 F )  /\  ( R `  X )  =/=  ( R `  F ) ) )
8 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
9 cdlemk.l . . . 4  |-  .<_  =  ( le `  K )
10 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
11 cdlemk.a . . . 4  |-  A  =  ( Atoms `  K )
12 cdlemk.h . . . 4  |-  H  =  ( LHyp `  K
)
13 cdlemk.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
15 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
168, 9, 10, 11, 12, 13, 14, 15cdlemk6 34844 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
171, 2, 3, 4, 7, 16syl113anc 1231 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( G `  P )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
18 simp21l 1105 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  N  e.  T )
19 simp22 1022 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
20 simp23 1023 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  F )  =  ( R `  N ) )
2118, 19, 203jca 1168 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
22 cdlemk.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
238, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 34854 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( S `
 G ) `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) )
241, 21, 3, 4, 5, 23syl113anc 1231 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
25 simp11 1018 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
26 simp13 1020 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  G  e.  T )
279, 10, 11, 12, 13, 14trljat1 34173 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  G
) )  =  ( P  .\/  ( G `
 P ) ) )
2825, 26, 19, 27syl3anc 1219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  .\/  ( R `  G ) )  =  ( P  .\/  ( G `  P )
) )
2928oveq1d 6218 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )  =  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
3024, 29eqtrd 2495 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  =  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
31 simp11l 1099 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  K  e.  HL )
32 hllat 33371 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
3331, 32syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  K  e.  Lat )
34 simp12 1019 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  F  e.  T )
35 simp21r 1106 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  X  e.  T )
3625, 34, 353jca 1168 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  T
) )
37 simp313 1137 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  X  =/=  (  _I  |`  B ) )
388, 9, 10, 11, 12, 13, 14, 15, 22cdlemksat 34853 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  ( R `  X )  =/=  ( R `  F ) ) )  ->  ( ( S `
 X ) `  P )  e.  A
)
3936, 21, 3, 37, 6, 38syl113anc 1231 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  e.  A )
408, 11atbase 33297 . . . . 5  |-  ( ( ( S `  X
) `  P )  e.  A  ->  ( ( S `  X ) `
 P )  e.  B )
4139, 40syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  e.  B )
42 simp11r 1100 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  W  e.  H )
43 simp22l 1107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  P  e.  A )
44 cdlemk.v . . . . . 6  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )
458, 9, 10, 11, 12, 13, 14, 15, 44cdlemkvcl 34849 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  P  e.  A )  ->  V  e.  B )
4631, 42, 34, 26, 35, 43, 45syl231anc 1239 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  V  e.  B )
478, 10latjcom 15352 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( S `  X ) `  P
)  e.  B  /\  V  e.  B )  ->  ( ( ( S `
 X ) `  P )  .\/  V
)  =  ( V 
.\/  ( ( S `
 X ) `  P ) ) )
4833, 41, 46, 47syl3anc 1219 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( ( S `  X ) `  P
)  .\/  V )  =  ( V  .\/  ( ( S `  X ) `  P
) ) )
4944a1i 11 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  V  =  ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) ) )
508, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 34854 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  ( R `  X )  =/=  ( R `  F ) ) )  ->  ( ( S `
 X ) `  P )  =  ( ( P  .\/  ( R `  X )
)  ./\  ( ( N `  P )  .\/  ( R `  ( X  o.  `' F
) ) ) ) )
5136, 21, 3, 37, 6, 50syl113anc 1231 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  =  ( ( P 
.\/  ( R `  X ) )  ./\  ( ( N `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) ) )
529, 10, 11, 12, 13, 14trljat1 34173 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  X
) )  =  ( P  .\/  ( X `
 P ) ) )
5325, 35, 19, 52syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  .\/  ( R `  X ) )  =  ( P  .\/  ( X `  P )
) )
549, 11, 12, 13ltrnat 34147 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  P  e.  A
)  ->  ( X `  P )  e.  A
)
5525, 35, 43, 54syl3anc 1219 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( X `  P )  e.  A )
5610, 11hlatjcom 33375 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X `  P )  e.  A  /\  P  e.  A )  ->  (
( X `  P
)  .\/  P )  =  ( P  .\/  ( X `  P ) ) )
5731, 55, 43, 56syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( X `  P
)  .\/  P )  =  ( P  .\/  ( X `  P ) ) )
5853, 57eqtr4d 2498 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  .\/  ( R `  X ) )  =  ( ( X `  P )  .\/  P
) )
599, 11, 12, 13ltrnat 34147 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  P  e.  A
)  ->  ( N `  P )  e.  A
)
6025, 18, 43, 59syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( N `  P )  e.  A )
6135, 34jca 532 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( X  e.  T  /\  F  e.  T )
)
6211, 12, 13, 14trlcocnvat 34731 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  T  /\  F  e.  T )  /\  ( R `  X )  =/=  ( R `  F
) )  ->  ( R `  ( X  o.  `' F ) )  e.  A )
6325, 61, 6, 62syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  ( X  o.  `' F ) )  e.  A )
6410, 11hlatjcom 33375 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( N `  P )  e.  A  /\  ( R `  ( X  o.  `' F ) )  e.  A )  ->  (
( N `  P
)  .\/  ( R `  ( X  o.  `' F ) ) )  =  ( ( R `
 ( X  o.  `' F ) )  .\/  ( N `  P ) ) )
6531, 60, 63, 64syl3anc 1219 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( N `  P
)  .\/  ( R `  ( X  o.  `' F ) ) )  =  ( ( R `
 ( X  o.  `' F ) )  .\/  ( N `  P ) ) )
6658, 65oveq12d 6221 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( R `  X )
)  ./\  ( ( N `  P )  .\/  ( R `  ( X  o.  `' F
) ) ) )  =  ( ( ( X `  P ) 
.\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) )
6751, 66eqtrd 2495 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  =  ( ( ( X `  P ) 
.\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) )
6849, 67oveq12d 6221 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( V  .\/  ( ( S `
 X ) `  P ) )  =  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
6948, 68eqtrd 2495 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( ( S `  X ) `  P
)  .\/  V )  =  ( ( ( ( G `  P
)  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
7017, 30, 693brtr4d 4433 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  .<_  ( ( ( S `
 X ) `  P )  .\/  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4403    |-> cmpt 4461    _I cid 4742   `'ccnv 4950    |` cres 4953    o. ccom 4955   ` cfv 5529   iota_crio 6163  (class class class)co 6203   Basecbs 14296   lecple 14368   joincjn 15237   meetcmee 15238   Latclat 15338   Atomscatm 33271   HLchlt 33358   LHypclh 33991   LTrncltrn 34108   trLctrl 34165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-riotaBAD 32967
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-undef 6905  df-map 7329  df-poset 15239  df-plt 15251  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-p0 15332  df-p1 15333  df-lat 15339  df-clat 15401  df-oposet 33184  df-ol 33186  df-oml 33187  df-covers 33274  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359  df-llines 33505  df-lplanes 33506  df-lvols 33507  df-lines 33508  df-psubsp 33510  df-pmap 33511  df-padd 33803  df-lhyp 33995  df-laut 33996  df-ldil 34111  df-ltrn 34112  df-trl 34166
This theorem is referenced by:  cdlemk11  34856
  Copyright terms: Public domain W3C validator