![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk5auN | Structured version Visualization version Unicode version |
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk1.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemk1.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cdlemk5auN |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk1.b |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cdlemk1.l |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | cdlemk1.j |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | cdlemk1.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | cdlemk1.h |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | cdlemk1.t |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | cdlemk1.r |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | cdlemk1.m |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdlemk5a 34447 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-8 1900 ax-9 1907 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-rep 4529 ax-sep 4539 ax-nul 4548 ax-pow 4595 ax-pr 4653 ax-un 6610 ax-riotaBAD 32570 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1458 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-mo 2315 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-nel 2636 df-ral 2754 df-rex 2755 df-reu 2756 df-rmo 2757 df-rab 2758 df-v 3059 df-sbc 3280 df-csb 3376 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-nul 3744 df-if 3894 df-pw 3965 df-sn 3981 df-pr 3983 df-op 3987 df-uni 4213 df-iun 4294 df-iin 4295 df-br 4417 df-opab 4476 df-mpt 4477 df-id 4768 df-xp 4859 df-rel 4860 df-cnv 4861 df-co 4862 df-dm 4863 df-rn 4864 df-res 4865 df-ima 4866 df-iota 5565 df-fun 5603 df-fn 5604 df-f 5605 df-f1 5606 df-fo 5607 df-f1o 5608 df-fv 5609 df-riota 6277 df-ov 6318 df-oprab 6319 df-mpt2 6320 df-1st 6820 df-2nd 6821 df-undef 7046 df-map 7500 df-preset 16222 df-poset 16240 df-plt 16253 df-lub 16269 df-glb 16270 df-join 16271 df-meet 16272 df-p0 16334 df-p1 16335 df-lat 16341 df-clat 16403 df-oposet 32787 df-ol 32789 df-oml 32790 df-covers 32877 df-ats 32878 df-atl 32909 df-cvlat 32933 df-hlat 32962 df-llines 33108 df-lplanes 33109 df-lvols 33110 df-lines 33111 df-psubsp 33113 df-pmap 33114 df-padd 33406 df-lhyp 33598 df-laut 33599 df-ldil 33714 df-ltrn 33715 df-trl 33770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |