Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk55u1 Structured version   Unicode version

Theorem cdlemk55u1 34948
Description: Lemma for cdlemk55u 34949. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
cdlemk5.u  |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )
Assertion
Ref Expression
cdlemk55u1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  ( G  o.  I )
)  =  ( ( U `  G )  o.  ( U `  I ) ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z
Allowed substitution hints:    U( z, g, b)    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk55u1
StepHypRef Expression
1 simp11 1018 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp21l 1105 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( R `  F
)  =  ( R `
 N ) )
3 simp12 1019 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
4 simp13 1020 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  N  e.  T )
5 simp21r 1106 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  =/=  N )
6 cdlemk5.b . . . . . 6  |-  B  =  ( Base `  K
)
7 cdlemk5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemk5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemk5.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
106, 7, 8, 9trlnid 34162 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( F  =/=  N  /\  ( R `  F )  =  ( R `  N ) ) )  ->  F  =/=  (  _I  |`  B ) )
111, 3, 4, 5, 2, 10syl122anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  =/=  (  _I  |`  B ) )
123, 11, 43jca 1168 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )
)
13 simp22 1022 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
14 simp23 1023 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  I  e.  T )
15 simp3 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
16 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
17 cdlemk5.j . . . 4  |-  .\/  =  ( join `  K )
18 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
19 cdlemk5.a . . . 4  |-  A  =  ( Atoms `  K )
20 cdlemk5.z . . . 4  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
21 cdlemk5.y . . . 4  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
22 cdlemk5.x . . . 4  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
236, 16, 17, 18, 19, 7, 8, 9, 20, 21, 22cdlemk55 34944 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  [_ ( G  o.  I
)  /  g ]_ X  =  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
241, 2, 12, 13, 14, 15, 23syl231anc 1239 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  [_ ( G  o.  I
)  /  g ]_ X  =  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
257, 8ltrnco 34702 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  I  e.  T
)  ->  ( G  o.  I )  e.  T
)
261, 13, 14, 25syl3anc 1219 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( G  o.  I
)  e.  T )
27 cdlemk5.u . . . 4  |-  U  =  ( g  e.  T  |->  if ( F  =  N ,  g ,  X ) )
2822, 27cdlemk40f 34902 . . 3  |-  ( ( F  =/=  N  /\  ( G  o.  I
)  e.  T )  ->  ( U `  ( G  o.  I
) )  =  [_ ( G  o.  I
)  /  g ]_ X )
295, 26, 28syl2anc 661 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  ( G  o.  I )
)  =  [_ ( G  o.  I )  /  g ]_ X
)
3022, 27cdlemk40f 34902 . . . 4  |-  ( ( F  =/=  N  /\  G  e.  T )  ->  ( U `  G
)  =  [_ G  /  g ]_ X
)
315, 13, 30syl2anc 661 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  G
)  =  [_ G  /  g ]_ X
)
3222, 27cdlemk40f 34902 . . . 4  |-  ( ( F  =/=  N  /\  I  e.  T )  ->  ( U `  I
)  =  [_ I  /  g ]_ X
)
335, 14, 32syl2anc 661 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  I
)  =  [_ I  /  g ]_ X
)
3431, 33coeq12d 5113 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( ( U `  G )  o.  ( U `  I )
)  =  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) )
3524, 29, 343eqtr4d 2505 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  N  e.  T )  /\  (
( ( R `  F )  =  ( R `  N )  /\  F  =/=  N
)  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( U `  ( G  o.  I )
)  =  ( ( U `  G )  o.  ( U `  I ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   [_csb 3396   ifcif 3900   class class class wbr 4401    |-> cmpt 4459    _I cid 4740   `'ccnv 4948    |` cres 4951    o. ccom 4953   ` cfv 5527   iota_crio 6161  (class class class)co 6201   Basecbs 14293   lecple 14365   joincjn 15234   meetcmee 15235   Atomscatm 33247   HLchlt 33334   LHypclh 33967   LTrncltrn 34084   trLctrl 34141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-riotaBAD 32943
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-iin 4283  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-undef 6903  df-map 7327  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-p1 15330  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-llines 33481  df-lplanes 33482  df-lvols 33483  df-lines 33484  df-psubsp 33486  df-pmap 33487  df-padd 33779  df-lhyp 33971  df-laut 33972  df-ldil 34087  df-ltrn 34088  df-trl 34142
This theorem is referenced by:  cdlemk55u  34949
  Copyright terms: Public domain W3C validator