Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk54 Structured version   Unicode version

Theorem cdlemk54 36160
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk54  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z   
j, b, g, z
Allowed substitution hints:    A( j)    B( j)    P( j)    R( j)    T( j)    F( j)    G( j)    H( j)    I( j)    .\/ ( j)    K( j)    .<_ ( j)    ./\ ( j)    N( j)    W( j)    X( z, g, j, b)    Y( g, j, b)    Z( z, j, b)

Proof of Theorem cdlemk54
StepHypRef Expression
1 coass 5532 . . 3  |-  ( ( G  o.  I )  o.  j )  =  ( G  o.  (
I  o.  j ) )
2 csbeq1 3443 . . 3  |-  ( ( ( G  o.  I
)  o.  j )  =  ( G  o.  ( I  o.  j
) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X )
31, 2ax-mp 5 . 2  |-  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X
4 simp1 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
5 simp21 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
) )
6 simp1l 1020 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp22 1030 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  G  e.  T )
8 simp31l 1119 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  I  e.  T )
9 cdlemk5.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 cdlemk5.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
119, 10ltrnco 35921 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  I  e.  T
)  ->  ( G  o.  I )  e.  T
)
126, 7, 8, 11syl3anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( G  o.  I )  e.  T )
13 simp23 1031 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 simp32 1033 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  e.  T )
15 simp333 1151 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  ( G  o.  I )
) )
1615necomd 2738 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) )
17 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
18 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
19 cdlemk5.j . . . 4  |-  .\/  =  ( join `  K )
20 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
21 cdlemk5.a . . . 4  |-  A  =  ( Atoms `  K )
22 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
23 cdlemk5.z . . . 4  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
24 cdlemk5.y . . . 4  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
25 cdlemk5.x . . . 4  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
2617, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 36159 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  o.  I )  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) ) )  ->  [_ ( ( G  o.  I )  o.  j
)  /  g ]_ X  =  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X ) )
274, 5, 12, 13, 14, 16, 26syl132anc 1246 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  ( [_ ( G  o.  I )  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
28 simp2 997 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
299, 10ltrnco 35921 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  I  e.  T  /\  j  e.  T
)  ->  ( I  o.  j )  e.  T
)
306, 8, 14, 29syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
I  o.  j )  e.  T )
31 simp31r 1120 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =  ( R `  I ) )
32 simp332 1150 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  G
) )
3332, 31neeqtrd 2762 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  I
) )
3433necomd 2738 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  j
) )
35 simp331 1149 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  =/=  (  _I  |`  B ) )
3617, 9, 10, 22trlcone 35930 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I  e.  T  /\  j  e.  T )  /\  (
( R `  I
)  =/=  ( R `
 j )  /\  j  =/=  (  _I  |`  B ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
376, 8, 14, 34, 35, 36syl122anc 1237 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
3831, 37eqnetrd 2760 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =/=  ( R `  (
I  o.  j ) ) )
3917, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 36159 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  o.  j )  e.  T  /\  ( R `  G
)  =/=  ( R `
 ( I  o.  j ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
404, 28, 30, 38, 39syl112anc 1232 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
4117, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 36159 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  I  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  I
)  =/=  ( R `
 j ) ) )  ->  [_ ( I  o.  j )  / 
g ]_ X  =  (
[_ I  /  g ]_ X  o.  [_ j  /  g ]_ X
) )
424, 5, 8, 13, 14, 34, 41syl132anc 1246 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
I  o.  j )  /  g ]_ X  =  ( [_ I  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
4342coeq2d 5171 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) ) )
44 coass 5532 . . . 4  |-  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) )
4543, 44syl6eqr 2526 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
4640, 45eqtrd 2508 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  ( ( [_ G  / 
g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
473, 27, 463eqtr3a 2532 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   [_csb 3440   class class class wbr 4453    _I cid 4796   `'ccnv 5004    |` cres 5007    o. ccom 5009   ` cfv 5594   iota_crio 6255  (class class class)co 6295   Basecbs 14506   lecple 14578   joincjn 15447   meetcmee 15448   Atomscatm 34466   HLchlt 34553   LHypclh 35186   LTrncltrn 35303   trLctrl 35360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-riotaBAD 34162
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-undef 7014  df-map 7434  df-poset 15449  df-plt 15461  df-lub 15477  df-glb 15478  df-join 15479  df-meet 15480  df-p0 15542  df-p1 15543  df-lat 15549  df-clat 15611  df-oposet 34379  df-ol 34381  df-oml 34382  df-covers 34469  df-ats 34470  df-atl 34501  df-cvlat 34525  df-hlat 34554  df-llines 34700  df-lplanes 34701  df-lvols 34702  df-lines 34703  df-psubsp 34705  df-pmap 34706  df-padd 34998  df-lhyp 35190  df-laut 35191  df-ldil 35306  df-ltrn 35307  df-trl 35361
This theorem is referenced by:  cdlemk55a  36161
  Copyright terms: Public domain W3C validator