Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk54 Structured version   Unicode version

Theorem cdlemk54 34698
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk54  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z   
j, b, g, z
Allowed substitution hints:    A( j)    B( j)    P( j)    R( j)    T( j)    F( j)    G( j)    H( j)    I( j)    .\/ ( j)    K( j)    .<_ ( j)    ./\ ( j)    N( j)    W( j)    X( z, g, j, b)    Y( g, j, b)    Z( z, j, b)

Proof of Theorem cdlemk54
StepHypRef Expression
1 coass 5377 . . 3  |-  ( ( G  o.  I )  o.  j )  =  ( G  o.  (
I  o.  j ) )
2 csbeq1 3312 . . 3  |-  ( ( ( G  o.  I
)  o.  j )  =  ( G  o.  ( I  o.  j
) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X )
31, 2ax-mp 5 . 2  |-  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X
4 simp1 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
5 simp21 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
) )
6 simp1l 1012 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp22 1022 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  G  e.  T )
8 simp31l 1111 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  I  e.  T )
9 cdlemk5.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 cdlemk5.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
119, 10ltrnco 34459 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  I  e.  T
)  ->  ( G  o.  I )  e.  T
)
126, 7, 8, 11syl3anc 1218 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( G  o.  I )  e.  T )
13 simp23 1023 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 simp32 1025 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  e.  T )
15 simp333 1143 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  ( G  o.  I )
) )
1615necomd 2640 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) )
17 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
18 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
19 cdlemk5.j . . . 4  |-  .\/  =  ( join `  K )
20 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
21 cdlemk5.a . . . 4  |-  A  =  ( Atoms `  K )
22 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
23 cdlemk5.z . . . 4  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
24 cdlemk5.y . . . 4  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
25 cdlemk5.x . . . 4  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
2617, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 34697 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  o.  I )  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) ) )  ->  [_ ( ( G  o.  I )  o.  j
)  /  g ]_ X  =  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X ) )
274, 5, 12, 13, 14, 16, 26syl132anc 1236 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  ( [_ ( G  o.  I )  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
28 simp2 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
299, 10ltrnco 34459 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  I  e.  T  /\  j  e.  T
)  ->  ( I  o.  j )  e.  T
)
306, 8, 14, 29syl3anc 1218 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
I  o.  j )  e.  T )
31 simp31r 1112 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =  ( R `  I ) )
32 simp332 1142 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  G
) )
3332, 31neeqtrd 2658 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  I
) )
3433necomd 2640 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  j
) )
35 simp331 1141 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  =/=  (  _I  |`  B ) )
3617, 9, 10, 22trlcone 34468 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I  e.  T  /\  j  e.  T )  /\  (
( R `  I
)  =/=  ( R `
 j )  /\  j  =/=  (  _I  |`  B ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
376, 8, 14, 34, 35, 36syl122anc 1227 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
3831, 37eqnetrd 2654 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =/=  ( R `  (
I  o.  j ) ) )
3917, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 34697 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  o.  j )  e.  T  /\  ( R `  G
)  =/=  ( R `
 ( I  o.  j ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
404, 28, 30, 38, 39syl112anc 1222 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
4117, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 34697 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  I  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  I
)  =/=  ( R `
 j ) ) )  ->  [_ ( I  o.  j )  / 
g ]_ X  =  (
[_ I  /  g ]_ X  o.  [_ j  /  g ]_ X
) )
424, 5, 8, 13, 14, 34, 41syl132anc 1236 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
I  o.  j )  /  g ]_ X  =  ( [_ I  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
4342coeq2d 5023 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) ) )
44 coass 5377 . . . 4  |-  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) )
4543, 44syl6eqr 2493 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
4640, 45eqtrd 2475 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  ( ( [_ G  / 
g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
473, 27, 463eqtr3a 2499 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736   [_csb 3309   class class class wbr 4313    _I cid 4652   `'ccnv 4860    |` cres 4863    o. ccom 4865   ` cfv 5439   iota_crio 6072  (class class class)co 6112   Basecbs 14195   lecple 14266   joincjn 15135   meetcmee 15136   Atomscatm 33004   HLchlt 33091   LHypclh 33724   LTrncltrn 33841   trLctrl 33898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-riotaBAD 32700
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-undef 6813  df-map 7237  df-poset 15137  df-plt 15149  df-lub 15165  df-glb 15166  df-join 15167  df-meet 15168  df-p0 15230  df-p1 15231  df-lat 15237  df-clat 15299  df-oposet 32917  df-ol 32919  df-oml 32920  df-covers 33007  df-ats 33008  df-atl 33039  df-cvlat 33063  df-hlat 33092  df-llines 33238  df-lplanes 33239  df-lvols 33240  df-lines 33241  df-psubsp 33243  df-pmap 33244  df-padd 33536  df-lhyp 33728  df-laut 33729  df-ldil 33844  df-ltrn 33845  df-trl 33899
This theorem is referenced by:  cdlemk55a  34699
  Copyright terms: Public domain W3C validator