Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk52 Structured version   Unicode version

Theorem cdlemk52 37077
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk52  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z
Allowed substitution hints:    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk52
StepHypRef Expression
1 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
3 simp11l 1105 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  K  e.  HL )
4 hllat 35485 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  K  e.  Lat )
6 simp11 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12 1025 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )
8 simp13 1026 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )
9 simp21 1027 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  N  e.  T )
10 simp22 1028 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
11 simp23 1029 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  F )  =  ( R `  N ) )
12 cdlemk5.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
13 cdlemk5.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
14 cdlemk5.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
15 cdlemk5.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
16 cdlemk5.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
17 cdlemk5.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
18 cdlemk5.z . . . . . . . . 9  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
19 cdlemk5.y . . . . . . . . 9  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
20 cdlemk5.x . . . . . . . . 9  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
211, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s 37060 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ G  /  g ]_ X  e.  T )
226, 7, 8, 9, 10, 11, 21syl132anc 1244 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  [_ G  /  g ]_ X  e.  T )
23 simp31 1030 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  I  e.  T )
24 simp32 1031 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  I  =/=  (  _I  |`  B ) )
2523, 24jca 530 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )
261, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s 37060 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ I  /  g ]_ X  e.  T )
276, 7, 25, 9, 10, 11, 26syl132anc 1244 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  [_ I  /  g ]_ X  e.  T )
2815, 16ltrnco 36842 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ G  / 
g ]_ X  e.  T  /\  [_ I  /  g ]_ X  e.  T
)  ->  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  e.  T
)
296, 22, 27, 28syl3anc 1226 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  e.  T )
30 simp22l 1113 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  P  e.  A )
312, 14, 15, 16ltrnat 36261 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  e.  T  /\  P  e.  A
)  ->  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A )
326, 29, 30, 31syl3anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A )
331, 14atbase 35411 . . . . 5  |-  ( ( ( [_ G  / 
g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A  ->  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  B )
3432, 33syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  B )
352, 14, 15, 16ltrnat 36261 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ G  / 
g ]_ X  e.  T  /\  P  e.  A
)  ->  ( [_ G  /  g ]_ X `  P )  e.  A
)
366, 22, 30, 35syl3anc 1226 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ G  /  g ]_ X `  P )  e.  A )
371, 14atbase 35411 . . . . . . 7  |-  ( (
[_ G  /  g ]_ X `  P )  e.  A  ->  ( [_ G  /  g ]_ X `  P )  e.  B )
3836, 37syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ G  /  g ]_ X `  P )  e.  B )
391, 15, 16, 17trlcl 36286 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ I  / 
g ]_ X  e.  T
)  ->  ( R `  [_ I  /  g ]_ X )  e.  B
)
406, 27, 39syl2anc 659 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  [_ I  / 
g ]_ X )  e.  B )
411, 12latjcl 15880 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( [_ G  /  g ]_ X `  P )  e.  B  /\  ( R `  [_ I  / 
g ]_ X )  e.  B )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  [_ I  /  g ]_ X ) )  e.  B )
425, 38, 40, 41syl3anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  [_ I  /  g ]_ X ) )  e.  B )
432, 14, 15, 16ltrnat 36261 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ I  / 
g ]_ X  e.  T  /\  P  e.  A
)  ->  ( [_ I  /  g ]_ X `  P )  e.  A
)
446, 27, 30, 43syl3anc 1226 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ I  /  g ]_ X `  P )  e.  A )
451, 14atbase 35411 . . . . . . 7  |-  ( (
[_ I  /  g ]_ X `  P )  e.  A  ->  ( [_ I  /  g ]_ X `  P )  e.  B )
4644, 45syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ I  /  g ]_ X `  P )  e.  B )
471, 15, 16, 17trlcl 36286 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ G  / 
g ]_ X  e.  T
)  ->  ( R `  [_ G  /  g ]_ X )  e.  B
)
486, 22, 47syl2anc 659 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  [_ G  / 
g ]_ X )  e.  B )
491, 12latjcl 15880 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( [_ I  /  g ]_ X `  P )  e.  B  /\  ( R `  [_ G  / 
g ]_ X )  e.  B )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  [_ G  /  g ]_ X ) )  e.  B )
505, 46, 48, 49syl3anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  [_ G  /  g ]_ X ) )  e.  B )
511, 13latmcl 15881 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) )  e.  B  /\  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  [_ G  /  g ]_ X ) )  e.  B )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  e.  B )
525, 42, 50, 51syl3anc 1226 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  e.  B )
53 simp11r 1106 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  W  e.  H )
541, 14, 15, 16, 17trlnidat 36295 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  I  e.  T  /\  I  =/=  (  _I  |`  B ) )  ->  ( R `  I )  e.  A
)
553, 53, 23, 24, 54syl211anc 1232 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  I )  e.  A )
561, 12, 14hlatjcl 35488 . . . . . 6  |-  ( ( K  e.  HL  /\  ( [_ G  /  g ]_ X `  P )  e.  A  /\  ( R `  I )  e.  A )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  e.  B )
573, 36, 55, 56syl3anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  e.  B )
58 simp13l 1109 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  G  e.  T )
59 simp13r 1110 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  G  =/=  (  _I  |`  B ) )
601, 14, 15, 16, 17trlnidat 36295 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  G  =/=  (  _I  |`  B ) )  ->  ( R `  G )  e.  A
)
613, 53, 58, 59, 60syl211anc 1232 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  G )  e.  A )
621, 12, 14hlatjcl 35488 . . . . . 6  |-  ( ( K  e.  HL  /\  ( [_ I  /  g ]_ X `  P )  e.  A  /\  ( R `  G )  e.  A )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) )  e.  B )
633, 44, 61, 62syl3anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) )  e.  B )
641, 13latmcl 15881 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I )
)  e.  B  /\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
)  e.  B )  ->  ( ( (
[_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) )  e.  B
)
655, 57, 63, 64syl3anc 1226 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I )
)  ./\  ( ( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) ) )  e.  B )
661, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk50 37075 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) ) )
6725, 66syld3an3 1271 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) ) )
681, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk51 37076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  .<_  ( (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) ) )
6925, 68syld3an3 1271 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  .<_  ( (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) ) )
701, 2, 5, 34, 52, 65, 67, 69lattrd 15887 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I )
)  ./\  ( ( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) ) ) )
711, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk47 37072 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  =  ( ( (
[_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) ) )
7270, 71breqtrrd 4465 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( [_ ( G  o.  I )  / 
g ]_ X `  P
) )
73 hlatl 35482 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
743, 73syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  K  e.  AtLat )
7515, 16ltrnco 36842 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  I  e.  T
)  ->  ( G  o.  I )  e.  T
)
766, 58, 23, 75syl3anc 1226 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  o.  I )  e.  T )
7758, 23jca 530 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  e.  T  /\  I  e.  T )
)
78 simp33 1032 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  G )  =/=  ( R `  I
) )
791, 15, 16, 17trlconid 36848 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  I  e.  T )  /\  ( R `  G )  =/=  ( R `  I
) )  ->  ( G  o.  I )  =/=  (  _I  |`  B ) )
806, 77, 78, 79syl3anc 1226 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  o.  I )  =/=  (  _I  |`  B ) )
8176, 80jca 530 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( G  o.  I
)  e.  T  /\  ( G  o.  I
)  =/=  (  _I  |`  B ) ) )
821, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s 37060 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( ( G  o.  I )  e.  T  /\  ( G  o.  I )  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ ( G  o.  I )  /  g ]_ X  e.  T )
836, 7, 81, 9, 10, 11, 82syl132anc 1244 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  [_ ( G  o.  I )  /  g ]_ X  e.  T )
842, 14, 15, 16ltrnat 36261 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ ( G  o.  I )  / 
g ]_ X  e.  T  /\  P  e.  A
)  ->  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  e.  A )
856, 83, 30, 84syl3anc 1226 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  e.  A )
862, 14atcmp 35433 . . 3  |-  ( ( K  e.  AtLat  /\  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A  /\  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  e.  A )  ->  (
( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `  P
)  .<_  ( [_ ( G  o.  I )  /  g ]_ X `  P )  <->  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) ) )
8774, 32, 85, 86syl3anc 1226 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `  P
)  .<_  ( [_ ( G  o.  I )  /  g ]_ X `  P )  <->  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) ) )
8872, 87mpbid 210 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   [_csb 3420   class class class wbr 4439    _I cid 4779   `'ccnv 4987    |` cres 4990    o. ccom 4992   ` cfv 5570   iota_crio 6231  (class class class)co 6270   Basecbs 14716   lecple 14791   joincjn 15772   meetcmee 15773   Latclat 15874   Atomscatm 35385   AtLatcal 35386   HLchlt 35472   LHypclh 36105   LTrncltrn 36222   trLctrl 36280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-riotaBAD 35081
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-undef 6994  df-map 7414  df-preset 15756  df-poset 15774  df-plt 15787  df-lub 15803  df-glb 15804  df-join 15805  df-meet 15806  df-p0 15868  df-p1 15869  df-lat 15875  df-clat 15937  df-oposet 35298  df-ol 35300  df-oml 35301  df-covers 35388  df-ats 35389  df-atl 35420  df-cvlat 35444  df-hlat 35473  df-llines 35619  df-lplanes 35620  df-lvols 35621  df-lines 35622  df-psubsp 35624  df-pmap 35625  df-padd 35917  df-lhyp 36109  df-laut 36110  df-ldil 36225  df-ltrn 36226  df-trl 36281
This theorem is referenced by:  cdlemk53a  37078
  Copyright terms: Public domain W3C validator