Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39s Structured version   Unicode version

Theorem cdlemk39s 33958
Description: Substitution version of cdlemk39 33935. TODO: Can any commonality with cdlemk35s 33956 be exploited? (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk39s  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  / 
g ]_ X )  .<_  ( R `  G ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b
Allowed substitution hints:    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk39s
StepHypRef Expression
1 simp22l 1116 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  e.  T )
2 cdlemk5.b . . . . . 6  |-  B  =  ( Base `  K
)
3 cdlemk5.l . . . . . 6  |-  .<_  =  ( le `  K )
4 cdlemk5.j . . . . . 6  |-  .\/  =  ( join `  K )
5 cdlemk5.m . . . . . 6  |-  ./\  =  ( meet `  K )
6 cdlemk5.a . . . . . 6  |-  A  =  ( Atoms `  K )
7 cdlemk5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemk5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemk5.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
10 cdlemk5.z . . . . . 6  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
11 cdlemk5.y . . . . . 6  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
12 cdlemk5.x . . . . . 6  |-  X  =  ( iota_ z  e.  T  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
132, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemk39 33935 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  g
) )
1413sbcth 3292 . . . 4  |-  ( G  e.  T  ->  [. G  /  g ]. (
( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  g
) ) )
15 sbcimg 3319 . . . 4  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  g
) )  <->  ( [. G  /  g ]. (
( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [. G  /  g ]. ( R `  X )  .<_  ( R `  g
) ) ) )
1614, 15mpbid 210 . . 3  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [. G  /  g ]. ( R `  X )  .<_  ( R `  g
) ) )
17 eleq1 2474 . . . . . . 7  |-  ( g  =  G  ->  (
g  e.  T  <->  G  e.  T ) )
18 neeq1 2684 . . . . . . 7  |-  ( g  =  G  ->  (
g  =/=  (  _I  |`  B )  <->  G  =/=  (  _I  |`  B ) ) )
1917, 18anbi12d 709 . . . . . 6  |-  ( g  =  G  ->  (
( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  <-> 
( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) )
20193anbi2d 1306 . . . . 5  |-  ( g  =  G  ->  (
( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  <->  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T ) ) )
21203anbi2d 1306 . . . 4  |-  ( g  =  G  ->  (
( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  <->  ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) ) ) )
2221sbcieg 3310 . . 3  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  <->  ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) ) ) )
23 sbcbr12g 4448 . . . 4  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( R `  X
)  .<_  ( R `  g )  <->  [_ G  / 
g ]_ ( R `  X )  .<_  [_ G  /  g ]_ ( R `  g )
) )
24 csbfv2g 5885 . . . . 5  |-  ( G  e.  T  ->  [_ G  /  g ]_ ( R `  X )  =  ( R `  [_ G  /  g ]_ X ) )
25 csbfv 5886 . . . . . 6  |-  [_ G  /  g ]_ ( R `  g )  =  ( R `  G )
2625a1i 11 . . . . 5  |-  ( G  e.  T  ->  [_ G  /  g ]_ ( R `  g )  =  ( R `  G ) )
2724, 26breq12d 4408 . . . 4  |-  ( G  e.  T  ->  ( [_ G  /  g ]_ ( R `  X
)  .<_  [_ G  /  g ]_ ( R `  g
)  <->  ( R `  [_ G  /  g ]_ X )  .<_  ( R `
 G ) ) )
2823, 27bitrd 253 . . 3  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( R `  X
)  .<_  ( R `  g )  <->  ( R `  [_ G  /  g ]_ X )  .<_  ( R `
 G ) ) )
2916, 22, 283imtr3d 267 . 2  |-  ( G  e.  T  ->  (
( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  / 
g ]_ X )  .<_  ( R `  G ) ) )
301, 29mpcom 34 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  / 
g ]_ X )  .<_  ( R `  G ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754   [.wsbc 3277   [_csb 3373   class class class wbr 4395    _I cid 4733   `'ccnv 4822    |` cres 4825    o. ccom 4827   ` cfv 5569   iota_crio 6239  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   meetcmee 15898   Atomscatm 32281   HLchlt 32368   LHypclh 33001   LTrncltrn 33118   trLctrl 33176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-riotaBAD 31977
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-undef 7005  df-map 7459  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-lplanes 32516  df-lvols 32517  df-lines 32518  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177
This theorem is referenced by:  cdlemk39s-id  33959  cdlemk51  33972
  Copyright terms: Public domain W3C validator