Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk35 Unicode version

Theorem cdlemk35 31394
Description: Part of proof of Lemma K of [Crawley] p. 118. cdlemk29-3 31393 with shorter hypotheses. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b  |-  B  =  ( Base `  K
)
cdlemk4.l  |-  .<_  =  ( le `  K )
cdlemk4.j  |-  .\/  =  ( join `  K )
cdlemk4.m  |-  ./\  =  ( meet `  K )
cdlemk4.a  |-  A  =  ( Atoms `  K )
cdlemk4.h  |-  H  =  ( LHyp `  K
)
cdlemk4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk4.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk4.y  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b
) ) ) )
cdlemk4.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk35  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  X  e.  T )
Distinct variable groups:    z, b,  ./\    .<_ , b, z    .\/ , b, z    A, b, z    B, b, z    F, b, z    G, b, z    H, b, z    K, b, z    N, b, z    P, b, z    R, b, z    T, b, z    W, b, z
Allowed substitution hints:    X( z, b)    Y( z, b)    Z( z, b)

Proof of Theorem cdlemk35
Dummy variables  d 
e  f  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemk4.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemk4.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemk4.j . . . 4  |-  .\/  =  ( join `  K )
4 cdlemk4.m . . . 4  |-  ./\  =  ( meet `  K )
5 cdlemk4.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemk4.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdlemk4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk4.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
9 eqid 2404 . . . 4  |-  ( f  e.  T  |->  ( iota_ i  e.  T ( i `
 P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) )  =  ( f  e.  T  |->  (
iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
10 eqid 2404 . . . 4  |-  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  d
) `  P )  .\/  ( R `  (
e  o.  `' d ) ) ) ) ) )  =  ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
11 eqid 2404 . . . 4  |-  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  d
) `  P )  .\/  ( R `  (
e  o.  `' d ) ) ) ) ) ) G ) ) )  =  (
iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  d
) `  P )  .\/  ( R `  (
e  o.  `' d ) ) ) ) ) ) G ) ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk34 31392 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( iota_ z  e.  T A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) ) G ) ) )  =  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
13 cdlemk4.x . . . 4  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y ) )
14 cdlemk4.y . . . . . . . . . 10  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b
) ) ) )
15 cdlemk4.z . . . . . . . . . . . 12  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
1615oveq1i 6050 . . . . . . . . . . 11  |-  ( Z 
.\/  ( R `  ( G  o.  `' b ) ) )  =  ( ( ( P  .\/  ( R `
 b ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( b  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' b ) ) )
1716oveq2i 6051 . . . . . . . . . 10  |-  ( ( P  .\/  ( R `
 G ) ) 
./\  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) )
1814, 17eqtri 2424 . . . . . . . . 9  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) )
1918eqeq2i 2414 . . . . . . . 8  |-  ( ( z `  P )  =  Y  <->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) )
2019imbi2i 304 . . . . . . 7  |-  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  (
z `  P )  =  Y )  <->  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2120ralbii 2690 . . . . . 6  |-  ( A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  (
z `  P )  =  Y )  <->  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2221a1i 11 . . . . 5  |-  ( z  e.  T  ->  ( A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y )  <->  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
2322riotabiia 6526 . . . 4  |-  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  Y ) )  =  (
iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2413, 23eqtri 2424 . . 3  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2512, 24syl6eqr 2454 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( iota_ z  e.  T A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) ) G ) ) )  =  X )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk29-3 31393 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( iota_ z  e.  T A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) ) G ) ) )  e.  T )
2725, 26eqeltrrd 2479 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  X  e.  T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   class class class wbr 4172    e. cmpt 4226    _I cid 4453   `'ccnv 4836    |` cres 4839    o. ccom 4841   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   iota_crio 6501   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   trLctrl 30640
This theorem is referenced by:  cdlemk36  31395  cdlemk39  31398  cdlemk35s  31419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641
  Copyright terms: Public domain W3C validator